Modelling cyanobacteria blooms in urban lakes.
Application to Lake of Enghien-les-Bains.

Talita Silva, Brigitte Vinçon-Leite, Bruno J. Lemaire, Briac Le Vu, Nicholas Escoffier, François Prévot, Catherine Quiblier, Bruno Tassin

To cite this version:
Talita Silva, Brigitte Vinçon-Leite, Bruno J. Lemaire, Briac Le Vu, Nicholas Escoffier, et al.. Modelling cyanobacteria blooms in urban lakes. Application to Lake of Enghien-les-Bains.. Secondes Journées Internationales de Limnologie, Oct 2010, Thonon-les-Bains, France. hal-00674654

HAL Id: hal-00674654
https://hal-enpc.archives-ouvertes.fr/hal-00674654
Submitted on 27 Feb 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Context

The ecosystems in urban lakes are very vulnerable to human pressure because of their specific physico-chemical environment, characterized by intermittent thermal stratification and low flow speeds. Furthermore, the high intake of nutrients in these environments encourages blooms of phytoplankton, including toxic cyanobacteria, disrupting their use and causing health problems (Catherine et al., 2008). This work focuses on the implementation of a predictive model of cyanobacteria blooms in urban lakes. It is part of a project whose objective is to monitor and warning system in real-time, of phytoplankton blooms in freshwater ecosystems.

Lake of Enghien-les-Bains

Lake of Enghien-les-Bains is located in Val-d’Oise, France (48°58’51”N, 2°18’16”E) (Fig. 1). It is an urban shallow lake (maximum depth: 2.5 m; mean depth: 1.3 m; area: 41 ha; volume: 534 000 m³), it plays a significant role in the stormwater management of its watershed (54 km², over 200 000 inhabitants) by storing up to 100000m³ of rainfall. The lake receives wastewater discharges from inappropriate connections in the stormwater network. This input results in a deterioration of the water quality and the lake is frequently affected by cyanobacteria blooms (Quiblier et al. 2008). In July 2009, the cyanobacterial biomass has reached 300 µgChl-a L⁻¹ (Silva, 2010). The prevailing species, Plankthothrix agardhii, is potentially toxic and is usually found in the first meters of the water column in shallow turbid eutrophic lakes.

DYRESM-CAEDYM

DYRESM is a one-dimensional numerical model for predicting the vertical distribution of temperature and density in lakes and reservoirs. It is based on a Lagrangian layer scheme (Imerito et al. 2007). DYRESM was coupled to CAEDYM, the aquatic ecosystem model, to simulate the cyanobacteria dynamics (Hamilton and Schladow, 1997). The input data are the lake morphometry, inflows, outflows, meteorological forcing (wind speed, air temperature, solar radiation, rainfall, cloud cover and vapor pressure), and the initial conditions for all variables to model (Fig. 2).

Measurement buoy

The data required for modelling (except the lake morphometry, flows and the nutrients) were obtained from a freshwater-adapted measurement buoy installed in the lake in November 2006. This buoy was located at the deepest region of the lake and it was equipped with meteorological sensors and immersed measuring probes of water quality parameters (Fig. 3). The measurements were performed in high frequency, every 30 min at a depth varying from 0.50 to 1.0 m (for water parameters). Data were transmitted through GPRS protocol to a database as a daily email. If a shorter time step was necessary, the buoy was remotely queried, which allows the continuous monitoring in a real-time of the physical-chemical conditions of the lake.

First results

The DYRESM model was run for the period from 1st April to 17th August 2009, the hottest period of the year and therefore, more favorable to cyanobacteria blooms (Fig. 4A). The maximum and minimum layer thickness was defined, respectively 0.16m and 0.70 m. The modelling of the cyanobacteria dynamics was conducted during a shorter period, from 1st to 20th June 2009 when cyanobacteria are the prevailing phytoplankton group (Fig.4B).

Discussion

The thermal model was able to adequately represent the daily cycles and the seasonal changes in water temperature (Fig 5A). Moreover, despite the shallowness of the lake, a thermal stratification at a depth of 2.0 m was noted during the summer (Fig 5B).

Concerning the biological simulation, the negative value of the arithmetic mean indicates that the model underestimates the phytoplankton biomass (Fig 6A), it has been stated in several studies on cyanobacteria that nutrient concentration is very significant to phytoplankton growth (Quiblier et al. 2008). In an urban lake, the stormwater discharge may play a role in triggering the proliferation of phytoplankton because nutrient load can rapidly increase during rainfall events. Therefore, the underestimation of the model results for the phytoplankton biomass may be related to the rain occurred during the simulation period (Fig 6B).

Conclusion and perspectives

These results show the advantage of coupling this type of model with high frequency measurements, to simulate the phytoplankton biomass in a shallow urban lake. The model showed a good performance in simulating the cyanobacteria dynamics in an urban shallow lake. Moreover, DYRESM-CAEDYM can be employed as a predictive model of phytoplankton blooms based on the chlorophyll and nutrient concentrations and on the weather forecast.