Water Quality in urban lakes: from continuous monitoring to forecasting. Application to cyanobacteria dynamics in Lake Enghien (France)
Talita Silva, Brigitte Vinçon-Leite, Bruno J. Lemaire, Briac Le Vu, Catherine Quiblier, François Prévot, Catherine Freissinet, Michel Calzas, Yves Degres, Bruno Tassin

To cite this version:
Talita Silva, Brigitte Vinçon-Leite, Bruno J. Lemaire, Briac Le Vu, Catherine Quiblier, et al.. Water Quality in urban lakes: from continuous monitoring to forecasting. Application to cyanobacteria dynamics in Lake Enghien (France). European Geosciences Union General Assembly 2011, Apr 2011, Viena, Austria. 2011. <hal-00674652>

HAL Id: hal-00674652
https://hal-enpc.archives-ouvertes.fr/hal-00674652
Submitted on 27 Feb 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Water quality in urban lakes: from continuous monitoring to forecasting Application to cyanobacteria dynamics in Lake Engenhien (France)

Silva T(1), Vinçon-Lebrun B.1, Lemaire J.1, Le Vu B.2, Gubler C.3,4, Prélot F.5, Freissinet C.6, Calza M.6, Dégres Y.7, Tessin B.1

Proliphyc Project
The Proliphyc project has developed a continuous in-situ monitoring system for cyanobacteria in freshwater ecosystems. It consists in a measurement buoy equipped with meteorological sensors and immersed probes to measure water quality parameters (see Fig. 1). This system is able to provide a long-term, high-frequency monitoring of lakes and reservoirs. Data set obtained can be used in order (Le Vu et al, 2010):
1) To build lake status indicators for daily, seasonal and annual water quality assessment and for comparison with other water bodies;
2) To collect surveillance data series to observe the general patterns of the aquatic ecosystem and to assess long-term changes;
3) To feed a statistical short-term forecasting model for early warning of cyanobacteria blooms;
4) To validate a deterministic model of cyanobacteria dynamics which may highlight the factors controlling blooms.

Study site: Lake of Engenhien-les-Bains

In 2009, such monitoring system was implemented in Lake Engenhien-les-Bains (Paris suburbs, France, see Fig. 2 and Table 1). Lake Engenhien is an urban shallow lake that plays a significant role in the stormwater management of its watershed by storing up to 100,000 m³ of rainwater. The lake receives wastewater discharges from inappropriate connections in the stormwater management system. The lake water quality and the lake is frequently affected by cyanobacteria blooms of Planktothrix agardhii, a potentially toxic cyanobacterium (Gubler et al. 2008).

Water quality indicators
The time series can be used to infer indicators of cyanobacteria biomass, useful for lake management strategies. Three indicators, built from the raw time series, were proposed for Lake Engenhien (see Fig. 3):
- Water temperature and oxygen saturation rate associated to daily maximal cyanobacteria concentration;
- Cyanobacteria daily variation rate.

Cyanobacteria modelling
The coupled model DYRESM-CADYEM (DYCD) was used for deterministic simulation of cyanobacteria dynamics in Lake Engenhien. DYRESM is a one-dimensional numerical model for predicting the vertical distribution of temperature in lakes and reservoirs (Imetto 2007). It was coupled to CAEDYM, the aquatic ecosystem model to simulate cyanobacteria dynamics (Hamilton and Schladow, 1997). The structure of DYCD coupled model is shown on Fig. 4.

Acknowledgements: This work is part of the Proliphyc project (Monitoring System of Phytoplankton Blooms - Application to Cyanobacteria funded by the ANR-PRECODIP program. We wish to acknowledge SARBE and Engenhien municipality for their support.

Contact: tsilva@leesu.enpc.fr
bvl@leesu.enpc.fr

table 1: Lake Engenhien characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean depth</td>
<td>1.3 m</td>
</tr>
<tr>
<td>Max. depth</td>
<td>2.65 m</td>
</tr>
<tr>
<td>Area</td>
<td>41 ha</td>
</tr>
<tr>
<td>Volume</td>
<td>534,000 m³</td>
</tr>
<tr>
<td>Population</td>
<td>54 km²</td>
</tr>
<tr>
<td>Population density</td>
<td>~ 200,000 inh.</td>
</tr>
</tbody>
</table>

References:


Huang J., Calvo M., d'Angelo N.,@d'Angelo N., Turbines & Marine Systems, Le vide.


Fig. 1: Proliphyc buoy measured variables (Chl-a total and 4 phytoplankton groups)

Fig. 2: Lake Engenhien: (a) Location in France, (b) Aerial vue of the lake and its neighbourhood (IAURIF 2008)

Fig. 3: Raw data: (a) Chlorophyll-a concentrations (b) Water temperature and O₂ concentration. Water quality indicators: (c) Cyanobacteria daily variation rate (d) Water temperature and O₂ saturation related to cyanobacteria daily maxima.

Fig. 4: Dyresm-Caedm model structure (* Data from Proliphyc buoy)

Parameter calibration was performed with data collected for 15 days (1-16 June 2009) and the validation during a 5-month period (17 June - 29 November 2009). Modelling results are presented for a 14-day period (2 – 15 July), when cyanobacteria biomass increased to the maximal concentration measured in 2009 and then decreased (see Fig. 5b).

Fig. 5: Data and modelling results in July 2009: (a) Water temperature and (b) Cyanobacteria. Red dots and error bars indicate the daily means and standard deviations.

Cyanobacteria forecasting
Two modelling approaches aimed at forecasting short-term P. agardhii’s dynamics are presented: the deterministic DYCD model and a neural network model (NNM). DYCD predictive simulation uses weather forecast (IDéo-France) as meteorological forcing (see Fig. 4). The parameter values are those obtained by the 2009 calibration.

A recurrent neural network (Jeong et al. 2008; Diaconescu 2008) of Non-linear AutoRegressive with eXogenous inputs (NARX) type is applied at a 4-day horizon using:
- Cyanobacteria concentrations and water temperature measured in the previous 4 days
- Air temperature forecasted for the next 4 days (IDéo-France)

Values measured from 1st to 30th April 2009 were used for the neural network learning step. The forecasting was then performed for successive 4-day periods from May to September 2009, a continuous learning being carried out on each previous 4 days. Short-term predictions of cyanobacteria biomass computed by NNN and DYCD for 04-07 July and 11-14 July 2009 are compared on Fig. 6 a. and b.

Fig. 6: NNM and DYCD cyanobacteria forecasting in 2009: (a) 04-07 July (b) 11-14 July

The results of both models showed good agreement with observed values. The NNM performances benefited from the high frequency of the measurements. As it is easier to implement, it provides for lake managers an affordable support for anticipating cyanobacteria blooms.

Conclusion
This continuous in-situ monitoring and forecasting system for cyanobacteria in freshwater ecosystems provides high-frequency time series, compulsory for addressing research issues. It allows researchers to implement deterministic models of phytoplankton dynamics and stakeholders to assess long-term changes of the aquatic ecosystem functioning. Moreover, the measured data can be continuously processed to infer daily, seasonal or annual water quality indicators of the lake. Finally, a statistical short-term forecasting model can supply a preview of the cyanobacteria biomass and possibly an early warning of blooms. The results and the forecasts can be displayed within an information system easily reached by the citizens and/or the stakeholders.