R. W. Gillham and S. F. O-'hannesin, Enhanced Degradation of Halogenated Aliphatics by Zero-Valent Iron, Ground Water, vol.21, issue.8, pp.958-967, 1994.
DOI : 10.1111/j.1745-6584.1994.tb00935.x

L. J. Matheson and P. G. Tratnyek, Reductive Dehalogenation of Chlorinated Methanes by Iron Metal, Environmental Science & Technology, vol.28, issue.12, pp.2045-2053, 1994.
DOI : 10.1021/es00061a012

D. W. Blowes, C. J. Ptacek, J. L. Jambor, S. F. O-'hannesin, and R. W. Gillham, In-situ remediation of Cr(VI)-contaminated 570 groundwater using permeable reactive walls: laboratory studies Long-term performance of an in situ "iron wall" for 573 remediation of VOCs, Environ. Sci. Technol. Ground Water, vol.571, issue.36, pp.31-164, 1997.

M. M. Scherer, S. Richter, R. L. Valentine, and P. J. Alvarez, Chemistry and microbiology of 575 permeable reactive barriers for in situ groundwater clean up, Rev, Environ. Sci, p.576

A. D. Henderson and A. H. Demond, Long-Term Performance of Zero-Valent Iron Permeable Reactive Barriers: A Critical Review, Environmental Engineering Science, vol.24, issue.4, pp.401-423, 2007.
DOI : 10.1089/ees.2006.0071

G. Bartzas and K. Komnitsas, Solid phase studies and geochemical modelling of low-cost 580

L. Li and C. H. Benson, Evaluation of five strategies to limit the impact of fouling in permeable reactive barriers, Journal of Hazardous Materials, vol.181, issue.1-3, pp.170-180, 2010.
DOI : 10.1016/j.jhazmat.2010.04.113

C. Noubactep and S. Caré, Dimensioning metallic iron beds for efficient contaminant 584 removal, Inactivation of 586 escherichia coli by nanoparticulate zerovalent iron and ferrous ion, pp.454-460, 2010.

S. Jeen, R. B. Gillham, and A. Przepiora, Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic 592 systems Predictions of long-term performance of 594 granular iron permeable reactive barriers: Field-scale evaluation, Water Air Soil Pollut Metallic iron for safe drinking water production, pp.595-607, 2011.

C. Wang, W. Zhang, S. M. Ponder, J. G. Darab, and T. E. Mallouk, Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs, Remediation of Cr(VI) and Pb(II) aqueous 601 solutions using supported, nanoscale zero-valent iron, pp.2154-2156, 1997.
DOI : 10.1021/es970039c

]. R. Muftikian, Q. Fernando, N. E. Korte-]-n, J. L. Korte, R. M. Zutman et al., A method for the rapid dechlorination of low 604 molecular weight chlorinated hydrocarbons in water Field 606 application of palladized iron for the dechlorination of trichloroethene, Waste Manage, Hydrodechlorination of 609 trichloroethylene to hydrocarbons using bimetallic nickel?iron nanoparticles. Chem, pp.2564-2569, 1995.

]. B. Mater, T. Karn, M. Kuiken, and . Otto, Nanotechnology and in situ remediation: A review of the 612 benefits and potential risks, Environ. Health Perspectives, vol.14, issue.117, pp.5140-5147, 2002.

V. Nagpal, A. D. Bokare, R. C. Chikate, C. V. Rode, and K. M. Paknikar, Reductive 614 dechlorination of ?-hexachlorocyclohexane using Fe?Pd bimetallic nanoparticles, p.615

. Hazard, S. M. Mater, B. Hosseini, M. K. Ataie-ashtiani, C. Zhang et al., Renewable hydrogen generation by bimetallic zerovalent 617 iron nanoparticles Nitrate reduction by nano-Fe/Cu 619 particles in packed column Treatment of chlorinated organic contaminants 621 with nanoscale bimetallic particles Discussion of Papers/Discussion of nano-scale iron for dehalogenation, Chem. Eng. J. Desalination Catal. Today, vol.175, issue.40, pp.680-687, 1998.

V. Remediation, Nanoscale iron particles for environmental remediation: an overview, Ground Water Monit. Remed, vol.218, issue.6, pp.41-54, 2003.

. Mater and . Sci, 630 [28] C. Macé, Controlling groundwater VOCs: do nanoscale ZVI particles have any 631 advantages over microscale ZVI or BNP?, Pollut. Eng, vol.38, issue.632, pp.31-111, 2006.

W. Venkatakrishnan, P. G. Zhang, R. L. Tratnyek, and . Johnson, Nanotechnology and groundwater remediation: A step 634 forward in technology understanding, Remed Nanotechnologies for environmental cleanup, Pradeep, Anshup, Noble metal nanoparticles for water purification: A critical review, pp.44-48, 2006.

A. Agarwal and H. Joshi, Environmental sciences application of nanotechnology in the 640 remediation of contaminated groundwater: A short review Nowack, Nano zero valent iron ? THE solution for water and soil 643 remediation, Zurich (Switzerland), pp.641-51, 2009.

C. Noubactep and S. Caré, On nanoscale metallic iron for groundwater remediation, Journal of Hazardous Materials, vol.182, issue.1-3, p.646
DOI : 10.1016/j.jhazmat.2010.06.009

URL : https://hal.archives-ouvertes.fr/hal-00551337

. Hazard, L. G. Mater, E. L. Cullen, G. R. Tilston, C. D. Mitchell et al., Assessing the impact 648 of nano-and micro-scale zerovalent iron particles on soil microbial activities: Particle 649 reactivity interferes with assay conditions and interpretation of genuine microbial 650 effects Reductive dechlorination of g-hexachloro-cyclohexane 652, Chemosphere, vol.182, issue.82, pp.923-927, 2010.

. Torresdey, Nanomaterials and the environment: A review for the biennium, p.656, 2008.

Z. Shi, J. T. Nurmi, and P. G. Tratnyek, Effects of nano zero-valent iron on oxidation- 658 reduction potential, J. Hazard. Mater. Environ. Sci. Technol, vol.186, issue.659, pp.1-15, 2011.

T. W. Wietsma, . J. Macbeth-]-m, T. W. Truex, V. R. Macbeth, B. G. Vermeul et al., Injection of zero-valent iron into an unconfined aquifer using 661 shear-thinning fluids, Ground Water Monit. Remed, vol.663, pp.31-50, 2011.

L. Dixon, M. Zhong, and . Oostrom, Demonstration of combined zero-valent iron and 665 27 electrical resistance heating for in situ trichloroethene remediation, Environ. Sci, p.666

. Technol, doi: 10.1021/es104266a, Environmental technologies at the Nanoscale, 2011.

. Sci, N. Technol, D. M. Sakulchaicharoen, J. E. O-'carroll, V. Herrera et al., Antibiotic removal from water: Elimination of 670 amoxicillin and ampicillin by microscale and nanoscale iron particles Enhanced stability and dechlorination 673 activity of pre-synthesis stabilized nanoscale FePd particles, Environ. Pollut. J. Contam. Hydrol. J. Hazard. Mater, vol.37, issue.118, pp.102-108, 2003.

C. Anstice, C. Alonso, F. J. Molina, S. Caré, Q. T. Nguyen et al., Cover cracking as a function of bar corrosion: part I- 680 experimental test Mechanical properties of the rust layer 682 induced by impressed current method in reinforced mortar, Cement Concrete Res Composition and expansion coefficient of rust based on 685 X-ray diffraction and thermal analysis, Materials and structures 26, pp.453-464, 1993.

. Thompson, The impact of zero-valent iron nanoparticles on a river water bacterial 691 community, J. Hazard. Mater, vol.184, pp.73-80, 2010.

M. Diao and M. Yao, Use of zero-valent iron nanoparticles in inactivating microbes, Water Research, vol.43, issue.20, p.693
DOI : 10.1016/j.watres.2009.08.051

T. Tervonen, I. Linkov, J. R. Figueira, J. Steevens, M. Chappell et al., Risk-based classification system of nanomaterials, Processes of contaminant removal in " Fe 0 ?H 2 O " systems revisited, pp.757-766, 2007.
DOI : 10.1007/s11051-008-9546-1

URL : https://hal.archives-ouvertes.fr/ineris-00963157

]. O. Res, C. Celebi, T. Uzum, H. N. Shahwan, and . Erten, A radiotracer study of the adsorption 708 behavior of aqueous Ba 2+ ions on nanoparticles of zero-valent iron Sequestration of metal cations with zerovalent iron 711 nanoparticles?a study with high resolution X-ray photoelectron spectroscopy (HR- 712 XPS, J. Hazard. Mater. J. Phys. Chem. C, vol.45, issue.111, pp.2931-2942, 2007.

H. K. Boparai, M. Joseph, and D. M. , Kinetics and thermodynamics of cadmium ion 714 removal by adsorption onto nano zerovalent iron particles, J. Hazard. Mater, pp.186-715, 2011.

S. Xiao, H. Ma, M. Shen, S. Wang, Q. Huang et al., Excellent copper(II) removal using 717 zero-valent iron nanoparticle -immobilized hybrid electrospun polymer nanofibrous 718 mats Anaerobic corrosion reaction kinetics 720 of nanosized iron The mechanism of the oxygen reduction on rust-covered metal 722 substrates Exploring the influence of 724 operational parameters on the reactivity of elemental iron materials Charging 727 and aggregation properties of carboxyl latex particles: experiments versus DLVO 728 theory The application of zero-valent iron nanoparticles for the 730 remediation of a uranium-contaminated waste effluent, Colloids Surf. A: Physicochem. Eng. Aspects Environ. Sci. Technol. Corros. Sci. J. Hazard. Mater. Langmuir J. Hazard. Mater, vol.38164, issue.178, pp.458-465, 1994.

R. L. Johnson, R. B. Thoms, R. O. Johnson, J. Nurmi, and P. G. Tratnyek, Mineral 733 precipitation upgradient from a zero-valent iron permeable reactive barrier, pp.171-179

W. Monit and . Rem, Chromium (VI) reduction in aqueous solutions by 736, pp.56-64, 2008.

Z. Fang, X. Qiu, J. Chen, X. Qiu-jiang, W. Zhang et al., Degradation of the polybrominated diphenyl ethers by 738 nanoscale zero-valent metallic particles prepared from steel pickling waste liquor Nitrate reduction using 741 nanosized zero-valent iron supported by polystyrene resins: Role of surface functional 742 groups, Desalination Water Res, vol.73969, issue.743, pp.34-41, 2011.

S. Hydrol, Z. Yuan, X. Zheng, J. Meng, L. Chen et al., Surfactant mediated HCB 747 dechlorination in contaminated soils and sediments by micro and nanoscale Cu/Fe 748 Particles, Geoderma, vol.12272, issue.159, pp.16-25, 2010.

/. Nanoscale-cu, . J. Fe-particles, . Hazard, B. S. Mater, Y. D. Kadu et al., Efficiency and 752 recycling capability of montmorillonite supported Fe?Ni bimetallic nanocomposites 753 towards hexavalent chromium remediation Extending service life 756 of household water filters by mixing metallic iron with sand, The effect of drying and 759 storage conditions on case hardening of scots pine and norway spruce timber, pp.1101-1105, 2010.

W. J. Fernando, A. L. Ahmad, S. R. Abd, Y. H. Shukor, . G. Lok et al., A model for constant 762 temperature drying rates of case hardened slices of papaya and garlic, J. Food Eng, vol.8877, pp.763-229, 2008.

Y. N. Vodyanitskii, Heavy metals removal and hydraulic performance in zero- 769 valent iron/pumice permeable reactive barriers The role of iron in the fixation of heavy metals and metalloids in 772 soils: a review of publications Arsenic(V) Removal from groundwater using nano 774 scale zero-valent iron as a colloidal reactive barrier material, Environ. Sci. Technol. J. Environ. Manag. Eurasian Soil Sci. Environ. Sci. Technol, vol.9180, issue.3, pp.45-767, 2006.

M. Flury, H. E. Flühler83-]-a, F. W. Fryar, J. Schwartz, N. J. Simunek et al., Brilliant Blue FCF as a dye tracer for solute transport studies. A 779 toxicological review Hydraulic-conductivity reduction, reaction-front propagation, 781 and preferential flow within a model reactive barrier Review and comparison of 784 models for describing non-equilibrium and preferential flow and transport in the vadose 785 zone, J. Environ. Qual. J. Contam. Hydrol. J. Hydrol, vol.23, issue.783, pp.1108-1112, 1994.

B. E. Clothier, S. R. Green, M. E. Deurer-]-s, S. Allaire, A. J. Roulier et al., Preferential flow and transport in soil: progress 787 and prognosis Quantifying preferential flow in soils: A review of 789 different techniques New approach to in-situ treatment of contaminated 791 groundwaters Groundwater contamination: Pump-and-treat remediation, Eur. J. Soil Sci. J. Hydrol. Environ. Progr, vol.59873, issue.4, pp.2-13, 1985.

R. C. Starr, J. A. Cherry, M. Min, H. Xu, J. Chen et al., In situ remediation of contaminated Ground water: The funnel- 795 and-Gate System Evidence of uranium biomineralization in sandstone- 797 hosted roll-front uranium deposits, northwestern China Sidborn, I. Neretnieks, Long term redox evolution in granitic rocks: Modelling the 800 redox front propagation in the rock matrix, Environ. Sci. Technol. Ground Water Ore Geol. Rev. Appl. Geochem, vol.23, issue.22, pp.630-636, 1989.

C. Jacobs, R. W. Su, and . Puls, Biogeochemical dynamics in zerovalent iron columns: implications for 803 permeable reactive barriers Arsenate and arsenite removal by zerovalent iron: kinetics, redox 805 transformation, and implications for in situ groundwater remediation, Environ. Sci. Technol. Environ. Sci, vol.33, issue.804, pp.2170-2177, 1999.

Y. Technol, J. Furukawa, J. Kim, R. T. Watkins, and . Wilkin, Formation of ferrihydrite and 808 associated iron corrosion products in permeable reactive barriers of zerovalent iron, pp.4562-4568, 2001.

T. Kohn, J. T. Kenneth, A. Livi, A. L. Roberts, and P. J. Vikesland, Longevity of granular iron 811 in groundwater treatment processes: corrosion product development, Environ. Sci, p.812

]. C. Technol, P. R. Palmer, J. R. Wittbrodt, B. A. Kiser, and . Manning, Processes affecting the remediation of chromium- 814 contaminated sites 815 [97] S. Nesic, Key issues related to modelling of internal corrosion of oil and gas pipelines ? 816 A review Reduction and immobilization of chromium(VI) by 818 iron(II)-treated faujasite, Environ. Health Perspect. Corros. Sci. J. Hazard. Mater, vol.39, issue.174, pp.2867-2879, 1991.

]. R. Crawford, I. H. Harding, and D. E. Mainwaring, Adsorption and coprecipitation of single 826 heavy metal ions onto the hydrated oxides of iron and chromium, Appl. Catal. B: Environ. Langmuir, vol.91, issue.9, pp.434-440, 1993.

R. J. Crawford, I. H. Harding, and D. E. Mainwaring, Adsorption and coprecipitation of 829 multiple heavy metal ions onto the hydrated oxides of iron and chromium, Langmuir, vol.828103, issue.831, pp.3050-3056, 1993.

. Schwertmann, Fractionation of organic matter due to reaction with ferrihydrite, p.833

W. P. Johnson, H. Ma, E. Pazmino, M. Kalin, W. N. Wheeler et al., Straining credibility: A general comment regarding 835 common arguments used to infer straining as the mechanism of colloid retention in 836 porous media The removal of uranium from mining waste 838 water using algal/microbial biomass 839 [106] C. Noubactep, Metallic iron for safe drinking water worldwide Arsenic removal in an iron oxide-coated fungal biomass 842 column: Analysis of breakthrough curves Arsenic contamination of groundwater in 844, Coprecipitation versus adsorption, pp.527-533, 2005.

D. Pokhrel and T. Viraraghavan, Biological filtration for removal of arsenic from drinking water, Chemical barriers for controlling groundwater 849 contamination, pp.1956-1961, 1993.
DOI : 10.1016/j.jenvman.2009.01.004

J. S. Morrison, R. R. Sprangler, and S. A. Morris, Subsurface injection of dissolved ferric 851 chloride to form a chemical barrier: Laboratory investigations, Ground Water, pp.34-852, 1996.

]. K. Hanna and J. Boily, Sorption of two naphthoic acids to goethite surface under flow 854 through conditions Bdeir Aqueous removal of diclofenac by plated elemental 856 iron: Bimetallic systems Aqueous contaminant removal by metallic iron: Is the paradigm shifting, Environ. Sci. Technol. J. Hazard. Mater, vol.853, issue.182, pp.75-83, 2010.

]. R. Reynolds and M. B. Goldhaber, Origin of a south Texas roll-type uranium deposit: I, Water SA, vol.37, issue.115, pp.859-860, 2011.

]. J. Posey-dowty, E. Axtmann, D. Crerar, M. Borcsik, A. Ronk et al., Dissolution 862 rate of uraninite and uranium roll-front ores, Alteration of iron-titanium oxide minerals] L. Romero, I. Neretnieks, L. Moreno, Movement of the redox front at the Osamu 864, pp.1677-1689, 1978.

. Utsumi-uranium-mine, . Poços-de-caldas, ]. D. Brazil, T. A. Read, R. J. Lawless et al., Uranium migration through intact 867 sandstone cores, J. Geochem. Explor. J. Cont. Hydrol, vol.45, issue.866, pp.471-865, 1992.