A bending-gradient model for thick plates, I : theory

Arthur Lebée 1, * Karam Sab 1, *
* Auteur correspondant
1 MSA - Matériaux et Structures Architecturés
NAVIER UMR 8205 - Laboratoire Navier
Abstract : This is the first part of a two-part paper dedicated to a new plate theory for out-of-plane loaded thick plates where the static unknowns are those of the Kirchhoff-Love theory (3 in-plane stresses and 3 bending moments), to which six components are added representing the gradient of the bending moment. The new theory, called the Bending-Gradient plate theory is described in the present paper. It is an extension to arbitrarily layered plates of the Reissner-Mindlin plate theory which appears as a special case of the Bending-Gradient plate theory when the plate is homogeneous. However, we demonstrate also that, in the general case, the Bending-Gradient model cannot be reduced to a Reissner-Mindlin model. In part two (Lebee and Sab, 2010a), the Bending-Gradient theory is applied to multilayered plates and its predictions are compared to those of the Reissner-Mindlin theory and to full 3D Pagano's exact solutions. The main conclusion of the second part is that the Bending-Gradient gives good predictions of both deflection and shear stress distributions in any material configuration. Moreover, under some symmetry conditions, the Bending-Gradient model coincides with the second-order approximation of the exact solution as the slenderness ratio L/h goes to infinity.
Type de document :
Article dans une revue
International Journal of Solids and Structures, Elsevier, 2011, 48, pp.2878-2888. <10.1016/j.ijsolstr.2011.06.006>
Liste complète des métadonnées

Contributeur : Arthur Lebée <>
Soumis le : mercredi 18 avril 2012 - 10:31:33
Dernière modification le : mercredi 15 avril 2015 - 16:07:14
Document(s) archivé(s) le : lundi 26 novembre 2012 - 14:55:55


Fichiers produits par l'(les) auteur(s)



Arthur Lebée, Karam Sab. A bending-gradient model for thick plates, I : theory. International Journal of Solids and Structures, Elsevier, 2011, 48, pp.2878-2888. <10.1016/j.ijsolstr.2011.06.006>. <hal-00661326>



Consultations de
la notice


Téléchargements du document