Statistical inference of 2D random stress fields obtained from polycrystalline aggregate calculations

Abstract : The spatial variability of stress fields resulting from polycrystalline aggregate calculations involving random grain geometry and crystal orientations is investigated. A periodogram-based method is proposed to identify the properties of homogeneous Gaussian random fields (power spectral density and related covariance structure). Based on a set of finite element polycrystalline aggregate calculations the properties of the maximal principal stress field are identified. Two cases are considered, using either a fixed or random grain geometry. The stability of the method w.r.t the number of samples and the load level (up to 3.5 \% macroscopic deformation) is investigated.
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal-enpc.archives-ouvertes.fr/hal-00660409
Contributeur : Bruno Sudret <>
Soumis le : lundi 16 janvier 2012 - 16:29:08
Dernière modification le : mardi 6 mars 2018 - 15:58:00
Document(s) archivé(s) le : mardi 17 avril 2012 - 02:36:20

Fichier

Sudret-IJF-2012.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00660409, version 1

Citation

Bruno Sudret, Hung Dang, Marc Berveiller, Asmahana Zeghadi. Statistical inference of 2D random stress fields obtained from polycrystalline aggregate calculations. International Journal of Fracture, Springer Verlag, 2012, pp.1-30. 〈hal-00660409〉

Partager

Métriques

Consultations de la notice

536

Téléchargements de fichiers

354