M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp, A racing algorithm for configuring metaheuristics, Proceedings of the Genetic and Evolutionary Computation Conference, pp.11-18, 2002.

D. Castro, L. N. Von-zuben, and F. , The clonal selection algorithm with engineering applications, Proceedings of Workshop on Artificial Immune Systems and their Apllications, GECCO, pp.36-37, 2000.

L. Davis, Adapting operator probabilities in genetic algorithms, Proceedings of the third international conference on Genetic algorithms, pp.61-69, 1989.

L. N. De-castro and J. Timmis, Artificial Immune Systems: A New Computational Intelligence Approach, 2002.
DOI : 10.1007/978-3-540-73922-7

K. Deb and S. Agrawal, Understanding interactions among genetic algorithm parameters, Foundations of Genetic Algorithms, pp.265-286, 1999.

A. E. Eiben, R. Hinterding, and Z. Michalewicz, Parameter control in evolutionary algorithms, IEEE Transactions on Evolutionary Computation, vol.3, issue.2, pp.124-141, 1999.
DOI : 10.1109/4235.771166

URL : https://hal.archives-ouvertes.fr/inria-00140549

A. E. Eiben, E. Marchiori, V. A. Valkó, X. Yao, E. K. Burke et al., Evolutionary Algorithms with On-the-Fly Population Size Adjustment, PPSN 2004, pp.41-50, 2004.
DOI : 10.1007/978-3-540-30217-9_5

S. M. Garrett, Parameter-free, adaptive clonal selection, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753), pp.1052-1058, 2004.
DOI : 10.1109/CEC.2004.1330978

J. Gómez, Self adaptation of operador rates in evolutionary algorithms, GECCO 2004, pp.1162-1173, 2004.

R. Hinterding, Z. Michalewicz, and A. E. Eiben, Adaptation in evolutionary computation: a survey, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97), pp.65-69, 1997.
DOI : 10.1109/ICEC.1997.592270

J. Hu, C. Guo, T. Li, and J. Yin, Adaptive clonal selection with elitism-guided crossover for function optimization, International Conference on Innovative Computing, Information and Control, pp.206-209, 2006.

F. Hutter, H. Hoos, and T. Stützle, Automatic algorithm configuration based on local search, Proceedings of the Twenty-Second Conference on Artifical Intelligence, pp.1152-1157, 2007.

F. G. Lobo and D. E. Goldberg, The parameter-less genetic algorithm in practice, Information Sciences, vol.167, issue.1-4, pp.217-232, 2004.
DOI : 10.1016/j.ins.2003.03.029

E. Mezura-montes and A. G. Palomeque-ortiz, Parameter control in Differential Evolution for constrained optimization, 2009 IEEE Congress on Evolutionary Computation, pp.1375-1382, 2009.
DOI : 10.1109/CEC.2009.4983104

E. Montero, M. C. Riff, and D. Basterrica, Improving MMAS using parameter control, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp.4007-4011, 2008.
DOI : 10.1109/CEC.2008.4631343

E. Montero and M. C. Riff, Self-calibrating Strategies for Evolutionary Approaches that Solve Constrained Combinatorial Problems, Foundations of Intelligent Systems, pp.262-267, 2008.
DOI : 10.1007/978-3-540-68123-6_29

O. Montiel, O. Castillo, P. Melin, A. R. Díaz, and R. Sepúlveda, Human evolutionary model: A new approach to optimization, Information Sciences, vol.177, issue.10, pp.2075-2098, 2007.
DOI : 10.1016/j.ins.2006.09.012

P. Moscato and J. F. Fontanari, Stochastic versus deterministic update in simulated annealing, Physics Letters A, vol.146, issue.4, pp.204-208, 1990.
DOI : 10.1016/0375-9601(90)90166-L

V. Nannen and A. E. Eiben, Efficient relevance estimation and value calibration of evolutionary algorithm parameters, 2007 IEEE Congress on Evolutionary Computation, pp.975-980, 2006.
DOI : 10.1109/CEC.2007.4424460

M. Pelikan, D. E. Goldberg, and F. G. Lobo, A survey of optimization by building and using probabilistic models, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334), pp.5-20, 2002.
DOI : 10.1109/ACC.2000.879173

D. Richter, B. Goldengorinand, G. Jäger, and P. Molitor, Improving the efficiency of helsgauns lin-kernighan heuristic for the symmetric tsp, Proceedings of the Fourth Workshop on Combinatorial and Algorithmic Aspects of Networking, pp.99-111, 2007.

M. C. Riff and X. Bonnaire, Inheriting Parents Operators: A New Dynamic Strategy for Improving Evolutionary Algorithms, ISMIS 2002, pp.333-341, 2002.
DOI : 10.1007/3-540-48050-1_37

J. E. Smith and T. C. Fogarty, Operator and parameter adaptation in genetic algorithms . Soft Computing -A Fusion of Foundations, Methodologies and Applications, vol.1, issue.2, pp.81-87, 1997.

K. G. Srinivasa, K. R. Venugopal, and L. M. Patnaik, A self-adaptive migration model genetic algorithm for data mining applications, Information Sciences, vol.177, issue.20, pp.4295-4313, 2007.
DOI : 10.1016/j.ins.2007.05.008

T. Stützle and H. Hoos, MAX-MIN Ant System and local search for the traveling salesman problem, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97), pp.309-314, 1997.
DOI : 10.1109/ICEC.1997.592327

T. Stützle, A. Grün, S. Linke, and M. Rüttger, A Comparison of Nature Inspired Heuristics on the Traveling Salesman Problem, Proceedings of the Parallel Problem Solving from Nature (PPSN VI), pp.661-670, 2000.
DOI : 10.1007/3-540-45356-3_65

W. Sun, X. Xu, H. Dai, Z. Tang, and H. Tamura, An immune optimization algorithm for tsp problem, SICE 2004 Annual Conference, pp.710-715, 2004.

K. C. Tan, S. C. Chiam, A. A. Mamun, and C. K. Goh, Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization, European Journal of Operational Research, vol.197, issue.2, pp.701-713, 2009.
DOI : 10.1016/j.ejor.2008.07.025

A. Tuson and P. Ross, Adapting Operator Settings in Genetic Algorithms, Evolutionary Computation, vol.1, issue.3, pp.161-184, 1998.
DOI : 10.1162/evco.1998.6.2.161

J. Yang, C. Wu, H. Pueh-lee, and Y. Liang, Solving traveling salesman problems using generalized chromosome genetic algorithm, Progress in Natural Science, vol.18, issue.7, pp.887-892, 2008.
DOI : 10.1016/j.pnsc.2008.01.030

W. Zhang and M. Looks, A novel local search algorithm for the traveling salesman problem that exploits backbones, Proceedings of the International Joint Conferences on Artificial Intelligence (IJCAI 2005), pp.343-350, 2005.