C-Strategy: A Dynamic Adaptive Strategy for the CLONALG Algorithm - Archive ouverte HAL Accéder directement au contenu
Chapitre D'ouvrage Année : 2010

C-Strategy: A Dynamic Adaptive Strategy for the CLONALG Algorithm

(1) , (1, 2) , (3, 4)
1
2
3
4

Résumé

The control of parameters during the execution of bioinspired algorithms is an open research area. In this paper, we propose a new parameter control strategy for the immune algorithm CLONALG. Our approach is based on reinforcement learning ideas. We focus our attention on controlling the number of clones. Our approach provides an efficient and low cost adaptive technique for parameter control. We use instances of the Travelling Salesman Problem. The results obtained are very encouraging.
Fichier principal
Vignette du fichier
clonalg_2_.pdf (263.14 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00654389 , version 1 (20-09-2012)

Identifiants

Citer

Maria Cristina Riff, Elizabeth Montero, Bertrand Neveu. C-Strategy: A Dynamic Adaptive Strategy for the CLONALG Algorithm. Marina L. Gavrilova and C. J. Kenneth Tan. Transactions on Computational Science VIII, Springer-Verlag, pp.41-55, 2010, Lecture Notes in Computer Science, 978-3-642-16235-0. ⟨10.1007/978-3-642-16236-7_3⟩. ⟨hal-00654389⟩
422 Consultations
689 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More