C-Strategy: A Dynamic Adaptive Strategy for the CLONALG Algorithm - École des Ponts ParisTech Access content directly
Book Sections Year : 2010

C-Strategy: A Dynamic Adaptive Strategy for the CLONALG Algorithm

Abstract

The control of parameters during the execution of bioinspired algorithms is an open research area. In this paper, we propose a new parameter control strategy for the immune algorithm CLONALG. Our approach is based on reinforcement learning ideas. We focus our attention on controlling the number of clones. Our approach provides an efficient and low cost adaptive technique for parameter control. We use instances of the Travelling Salesman Problem. The results obtained are very encouraging.
Fichier principal
Vignette du fichier
clonalg_2_.pdf (263.14 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00654389 , version 1 (20-09-2012)

Identifiers

Cite

Maria Cristina Riff, Elizabeth Montero, Bertrand Neveu. C-Strategy: A Dynamic Adaptive Strategy for the CLONALG Algorithm. Marina L. Gavrilova and C. J. Kenneth Tan. Transactions on Computational Science VIII, Springer-Verlag, pp.41-55, 2010, Lecture Notes in Computer Science, 978-3-642-16235-0. ⟨10.1007/978-3-642-16236-7_3⟩. ⟨hal-00654389⟩
421 View
698 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More