F. Benhamou and F. Goualard, Universally Quantified Interval Constraints, Proc. CP, pp.67-82, 2000.
DOI : 10.1007/3-540-45349-0_7

URL : http://arxiv.org/pdf/cs/0007002v1.pdf

F. Benhamou, F. Goualard, L. Granvilliers, and J. Puget, Revising Hull and Box Consistency, Proc. ICLP, pp.230-244, 1999.

G. Chabert and N. Beldiceanu, Sweeping with Continuous Domains, Proc. CP, pp.137-151, 2010.
DOI : 10.1007/978-3-642-15396-9_14

URL : https://hal.archives-ouvertes.fr/hal-00915701

G. Chabert and L. Jaulin, Contractor programming, Artificial Intelligence, vol.173, issue.11, pp.1079-1100, 2009.
DOI : 10.1016/j.artint.2009.03.002

URL : https://hal.archives-ouvertes.fr/hal-00428957

H. Collavizza, F. Delobel, and M. Rueher, Extending Consistent Domains of NCSP, IJCAI, pp.406-413, 1999.

DOI : 10.1016/B978-0-12-505630-4.50021-3

R. Horst and H. Tuy, Global Optimization : Deterministic Approaches, 1966.

R. B. Kearfott, Rigourous Global Search : Continuous Problems, 1996.

R. B. Kearfott, M. Novoa, and I. , Algorithm 681: INTBIS, a portable interval Newton/bisection package, ACM Transactions on Mathematical Software, vol.16, issue.2, pp.152-157, 1990.
DOI : 10.1145/78928.78931

Y. Lebbah, C. Michel, and M. Rueher, An efficient and safe framework for solving optimization problems, Journal of Computational and Applied Mathematics, vol.199, issue.2, pp.372-377, 2007.
DOI : 10.1016/j.cam.2005.08.037

URL : https://hal.archives-ouvertes.fr/hal-00510304

Y. Lin and M. Stadtherr, LP Strategy for the Interval-Newton Method in Deterministic Global Optimization, Industrial & Engineering Chemistry Research, vol.43, issue.14, pp.3741-3749, 2004.
DOI : 10.1021/ie034073d

R. E. Moore, Interval Analysis, 1966.

A. Neumaier, Interval Methods for Systems of Equations, 1990.
DOI : 10.1017/CBO9780511526473

A. Neumaier and O. Shcherbina, Safe bounds in linear and mixed-integer linear programming, Mathematical Programming, vol.99, issue.2, pp.283-296, 2004.
DOI : 10.1007/s10107-003-0433-3

J. Ninin, F. Messine, and P. Hansen, A reliable affine relaxation method for global optimization, Mathematical Programming, 2011.
DOI : 10.1007/s10288-014-0269-0

URL : https://hal.archives-ouvertes.fr/hal-01194735

J. Normand, A. Goldsztejn, M. Christie, and F. Benhamou, A branch and bound algorithm for numerical Max-CSP, Constraints, vol.58, issue.1???3, pp.213-237, 2010.
DOI : 10.1007/s10601-009-9084-1

URL : https://hal.archives-ouvertes.fr/hal-00481180

H. Sherali and W. Adams, Reformulation- Linearization Technique for Solving Discrete and Continuous Nonconvex Problems, 1999.
DOI : 10.1007/978-1-4757-4388-3

M. Tawarmalani and N. V. Sahinidis, A polyhedral branch-and-cut approach to global optimization, Mathematical Programming, vol.14, issue.2, pp.225-249, 2005.
DOI : 10.1007/s10107-005-0581-8

G. Trombettoni and G. Chabert, Constructive Interval Disjunction, Proc. CP, pp.635-650, 2007.
DOI : 10.1007/978-3-540-74970-7_45

URL : https://hal.archives-ouvertes.fr/hal-00936654

P. Van-hentenryck, L. Michel, and Y. Deville, Numerica : A Modeling Language for Global Optimization, 1997.