Data-driven Crowd Analysis in Videos

Mikel Rodriguez 1, 2 Josef Sivic 1 Ivan Laptev 1 Jean-Yves Audibert 1, 3, 4
1 WILLOW - Models of visual object recognition and scene understanding
CNRS - Centre National de la Recherche Scientifique : UMR8548, Inria Paris-Rocquencourt, DI-ENS - Département d'informatique de l'École normale supérieure
3 IMAGINE [Marne-la-Vallée]
LIGM - Laboratoire d'Informatique Gaspard-Monge, CSTB - Centre Scientifique et Technique du Bâtiment, ENPC - École des Ponts ParisTech
Abstract : In this work we present a new crowd analysis algorithm powered by behavior priors that are learned on a large database of crowd videos gathered from the Internet. The algorithm works by first learning a set of crowd behavior priors off-line. During testing, crowd patches are matched to the database and behavior priors are transferred. We adhere to the insight that despite the fact that the entire space of possible crowd behaviors is infinite, the space of distinguishable crowd motion patterns may not be all that large. For many individuals in a crowd, we are able to find analogous crowd patches in our database which contain similar patterns of behavior that can effectively act as priors to constrain the difficult task of tracking an individual in a crowd. Our algorithm is data-driven and, unlike some crowd characterization methods, does not require us to have seen the test video beforehand. It performs like state-ofthe-art methods for tracking people having common crowd behaviors and outperforms the methods when the tracked individual behaves in an unusual way.
Type de document :
Communication dans un congrès
ICCV 2011 - 13th International Conference on Computer Vision, Nov 2011, Barcelona, Spain. IEEE, pp.1235 - 1242, 2011, 〈10.1109/ICCV.2011.6126374〉
Liste complète des métadonnées

https://hal-enpc.archives-ouvertes.fr/hal-00654256
Contributeur : Jean-Yves Audibert <>
Soumis le : jeudi 22 décembre 2011 - 10:26:10
Dernière modification le : jeudi 7 février 2019 - 15:49:35
Document(s) archivé(s) le : lundi 19 novembre 2012 - 11:41:04

Fichier

ICCV11b.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Mikel Rodriguez, Josef Sivic, Ivan Laptev, Jean-Yves Audibert. Data-driven Crowd Analysis in Videos. ICCV 2011 - 13th International Conference on Computer Vision, Nov 2011, Barcelona, Spain. IEEE, pp.1235 - 1242, 2011, 〈10.1109/ICCV.2011.6126374〉. 〈hal-00654256〉

Partager

Métriques

Consultations de la notice

850

Téléchargements de fichiers

1323