A. Abdulle, P. Lin, and A. V. Shapeev, Homogenization-based analysis of quasicontinuum method for complex crystals

W. Curtin and R. Miller, Atomistic/continuum coupling in computational materials science, Modelling and Simulation in Materials Science and Engineering, vol.11, issue.3, pp.33-68, 2003.
DOI : 10.1088/0965-0393/11/3/201

M. Dobson and M. Luskin, Analysis of a force-based quasicontinuum approximation, ESAIM: Mathematical Modelling and Numerical Analysis, vol.42, issue.1, pp.113-139, 2008.
DOI : 10.1051/m2an:2007058

URL : https://hal.archives-ouvertes.fr/hal-00676436

M. Dobson and M. Luskin, An Optimal Order Error Analysis of the One-Dimensional Quasicontinuum Approximation, SIAM Journal on Numerical Analysis, vol.47, issue.4, pp.2455-2475, 2009.
DOI : 10.1137/08073723X

M. Dobson, M. Luskin, and C. Ortner, Stability, instability, and error of the force-based quasicontinuum approximation. Archive for Rational Mechanics and Analysis, pp.179-202, 2010.

M. Dobson, C. Ortner, and A. V. Shapeev, The Spectrum of the Force-Based Quasicontinuum Operator for a Homogeneous Periodic Chain, Multiscale Modeling & Simulation, vol.10, issue.3
DOI : 10.1137/110825704

W. E. , J. Lu, and J. Yang, Uniform accuracy of the quasicontinuum method, Phys. Rev. B, vol.74, p.214115, 2006.

M. Gunzburger and Y. Zhang, Quadrature-rule type approximations to the quasicontinuum method for short and long-range interatomic interactions, Comput. Methods Appl. Mech. Engrg, vol.199, pp.648-659, 2010.

B. V. Koten, X. H. Li, M. Luskin, and C. Ortner, A Computational and Theoretical Investigation of the Accuracy of Quasicontinuum Methods, Numerical Analysis of Multiscale Problems
DOI : 10.1007/978-3-642-22061-6_3

B. V. Koten and M. Luskin, Analysis of energy-based blended quasicontinuum approximations, SIAM J. Numer. Anal

X. H. Li and M. Luskin, A generalized quasi-nonlocal atomistic-to-continuum coupling method with finite range interaction, IMA Journal of Numerical Analysis

P. Lin, Convergence Analysis of a Quasi???Continuum Approximation for a Two???Dimensional Material Without Defects, SIAM Journal on Numerical Analysis, vol.45, issue.1, pp.313-332, 2007.
DOI : 10.1137/050636772

J. Lu and P. Ming, Convergence of a force-based hybrid method for atomistic and continuum models in three dimension

C. Makridakis, C. Ortner, and E. Süli, Stress-based atomistic/continuum coupling: a new variant of the quasicontinuum approximation

R. Miller and E. Tadmor, The quasicontinuum method: Overview, applications and current directions, Journal of Computer-Aided Materials Design, vol.9, issue.3, pp.203-239, 2002.
DOI : 10.1023/A:1026098010127

P. Ming and J. Z. Yang, Analysis of a One-Dimensional Nonlocal Quasi-Continuum Method, Multiscale Modeling & Simulation, vol.7, issue.4, pp.1838-1875, 2009.
DOI : 10.1137/080725842

D. Rodney and R. Phillips, Structure and Strength of Dislocation Junctions: An Atomic Level Analysis, Physical Review Letters, vol.82, issue.8, pp.1704-1707, 1999.
DOI : 10.1103/PhysRevLett.82.1704

A. V. Shapeev, Consistent energy-based atomistic/continuum coupling for two-body potentials in 1d and 2d, Multiscale Model. Simul

V. Shenoy, R. Miller, E. Tadmor, D. Rodney, R. Phillips et al., An adaptive finite element approach to atomic-scale mechanics???the quasicontinuum method, Journal of the Mechanics and Physics of Solids, vol.47, issue.3, pp.47611-642, 1999.
DOI : 10.1016/S0022-5096(98)00051-9

T. Shimokawa, J. Mortensen, J. Schiotz, and K. Jacobsen, Matching conditions in the quasicontinuum method: Removal of the error introduced at the interface between the coarse-grained and fully atomistic region, Physical Review B, vol.69, issue.21, p.69214104, 2004.
DOI : 10.1103/PhysRevB.69.214104

E. Tadmor, M. Ortiz, and R. Phillips, Quasicontinuum analysis of defects in solids, Philosophical Magazine A, vol.64, issue.6, pp.1529-1563, 1996.
DOI : 10.1088/0953-8984/2/24/004