M. Arnold, Constraint partitioning in dynamic iteration methods, Zeitschrift fur Angewandte Mathematik und Mechanik, pp.735-738, 2001.
DOI : 10.1002/zamm.200108115143

M. Arnold and M. Gunther, Preconditioned dynamic iteration for coupled differential-algebraic systems, Bit Numerical Mathematics, vol.41, issue.1, pp.1-25, 2001.
DOI : 10.1023/A:1021909032551

M. Barcelos, H. Bavestrello, and K. Maute, A Schur???Newton???Krylov solver for steady-state aeroelastic analysis and design sensitivity analysis, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.17-18, pp.2050-2069, 2006.
DOI : 10.1016/j.cma.2004.09.013

K. Bathe and H. Zhang, A mesh adaptivity procedure for CFD and fluid-structure interactions, Computers & Structures, vol.87, issue.11-12, pp.11-12604, 2009.
DOI : 10.1016/j.compstruc.2009.01.017

T. Belytschko, H. J. Yen, and R. Mullen, Mixed methods for time integration, Computer Methods in Applied Mechanics and Engineering, vol.17, issue.18, pp.259-275, 1979.
DOI : 10.1016/0045-7825(79)90022-7

T. Belytschko, An overview of semidiscretization and time integration procedures, Computational methods for transient analysis, pp.1-65, 1983.

T. Belytschko, K. Wing, B. Liu, and . Moran, Nonlinear finite elements for continua and structures, 2000.

K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical solution of initial-value problems in Differential-Algebraic Equations, 1996.
DOI : 10.1137/1.9781611971224

C. Bruneau and M. Saad, The 2D lid-driven cavity problem revisited, Computers & Fluids, vol.35, issue.3, pp.326-348, 2006.
DOI : 10.1016/j.compfluid.2004.12.004

URL : https://hal.archives-ouvertes.fr/hal-00281918

P. Causin, J. Gerbeau, and F. Nobile, Added-mass effect in the design of partitioned algorithms for fluid???structure problems, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.42-44, pp.42-444506, 2005.
DOI : 10.1016/j.cma.2004.12.005

URL : https://hal.archives-ouvertes.fr/hal-00695954

J. Degroote, K. Bathe, and J. Vierendeels, Performance of a new partitioned procedure versus a monolithic procedure in fluid???structure interaction, Computers & Structures, vol.87, issue.11-12, pp.11-12793, 2009.
DOI : 10.1016/j.compstruc.2008.11.013

I. Demird?i´demird?i´c and M. Peri´cperi´c, Space conservation law in finite volume calculations of fluid flow, International Journal for Numerical Methods in Fluid, vol.8, issue.9, 1988.

S. Deparis, M. Discacciati, G. Fourestey, and A. Quarteroni, Fluid???structure algorithms based on Steklov???Poincar?? operators, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.41-43, pp.41-435797, 2006.
DOI : 10.1016/j.cma.2005.09.029

P. Deuflhard, E. Hairer, and J. Zugck, One-step and extrapolation methods for differential-algebraic systems, Numerische Mathematik, vol.26, issue.5, pp.501-516, 1987.
DOI : 10.1007/BF01400352

C. Farhat and M. Lesoinne, Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems, Computer Methods in Applied Mechanics and Engineering, vol.182, issue.3-4, pp.499-515, 2000.
DOI : 10.1016/S0045-7825(99)00206-6

C. Farhat, M. Lesoinne, and N. Maman, Mixed explicit/implicit time integration of coupled aeroelastic problems: Three-field formulation, geometric conservation and distributed solution, International Journal for Numerical Methods in Fluids, vol.117, issue.10, 1995.
DOI : 10.1002/fld.1650211004

C. A. Felippa and K. C. Park, Synthesis tools for structural dynamics and partitioned analysis of coupled systems, pp.50-111, 2004.

C. A. Felippa, K. C. Park, J. A. De-runtz, ´. A. Fernández, J. Gerbeau et al., Stabilization of staggered solution procedures for fluid-structure interaction analysis In Computational methods for fluid-structure interaction problems Domain decomposition based Newton methods for fluid-structure interaction problems, ESAIM: Proceedings. edpsciences.org, 2008. 21. M. ´ A. Fernández and M. Moubachir. A Newton method using exact Jacobians for solving fluid?structure coupling. Computers and Structures, pp.95-124, 1977.

H. Joel, M. Ferziger, and . Peri´cperi´c, Computational Methods for Fluid Dynamics, 2002.

C. Förster, W. A. Wall, and E. Ramm, On the geometric conservation law in transient flow calculations on deforming domains, International Journal for Numerical Methods in Fluids, vol.174, issue.12, pp.1369-1379, 2006.
DOI : 10.1002/fld.1093

C. Förster, W. A. Wall, and E. Ramm, Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.7, pp.1278-1291, 2007.
DOI : 10.1016/j.cma.2006.09.002

L. P. Franca, T. J. Hughes, and R. Stenberg, Stabilized finite element methods. Incompressible Computational Fluid Dynamics, pp.87-107, 1993.
URL : https://hal.archives-ouvertes.fr/inria-00075259

J. F. Gerbeau and M. Vidrascu, A Quasi-Newton Algorithm Based on a Reduced Model for Fluid-Structure Interaction Problems in Blood Flows, ESAIM: Mathematical Modelling and Numerical Analysis, vol.37, issue.4, pp.631-647, 2003.
DOI : 10.1051/m2an:2003049

URL : https://hal.archives-ouvertes.fr/hal-00694625

U. Ghia, K. N. Ghia, and C. T. Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, Journal of Computational Physics, vol.48, issue.3, pp.387-411, 1982.
DOI : 10.1016/0021-9991(82)90058-4

M. Hortmann, G. Peri´cperi´c, and . Scheuerer, Finite volume multigrid prediction of laminar natural convection: Bench-mark solutions, International Journal for Numerical Methods in Fluids, vol.15, issue.2, pp.189-207, 1990.
DOI : 10.1002/fld.1650110206

B. Hübner, E. Walhorn, and D. Dinkler, A monolithic approach to fluid???structure interaction using space???time finite elements, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.23-26, pp.2087-2014, 2004.
DOI : 10.1016/j.cma.2004.01.024

T. J. Hughes, W. K. Liu, and T. K. Zimmermann, Lagrangian-Eulerian finite element formulation from incompressible viscous flows, Interdisciplinary Finite Element Analysis: Proceedings of the US- Japan Seminar Held at Cornell University, p.179, 1981.
DOI : 10.1016/0045-7825(81)90049-9

T. J. Hughes, K. S. Pister, and R. L. Taylor, Implicit-explicit finite elements in nonlinear transient analysis, Computer Methods in Applied Mechanics and Engineering, vol.17, issue.18, pp.159-182, 1979.
DOI : 10.1016/0045-7825(79)90086-0

A. Ibrahimbegovic, Nonlinear solid mechanics: Theoretical formulations and finite element solution methods, 2009.
DOI : 10.1007/978-90-481-2331-5

A. Ibrahimbegovic and B. Brank, Engineering Structures Under Extreme Conditions: Multiphysics and Multi-scale Computer Models in Non-linear Analysis and Optimal Design, 2005.

A. Ibrahimbegovic and S. Mamouri, Energy conserving/decaying implicit time-stepping scheme for nonlinear dynamics of three-dimensional beams undergoing finite rotations, Computer Methods in Applied Mechanics and Engineering, vol.191, issue.37-38, pp.4241-4258, 2002.
DOI : 10.1016/S0045-7825(02)00377-8

M. M. Joosten, W. G. Dettmer, and D. Peri´cperi´c, Analysis of the block Gauss-Seidel solution procedure for a strongly coupled model problem with reference to fluid-structure interaction, International Journal for Numerical Methods in Engineering, vol.1, issue.7, p.78, 2009.
DOI : 10.1007/s00466-008-0278-y

C. Kassiotis, J. Colliat, A. Ibrahimbegovic, and H. G. Matthies, Multiscale in time and stability analysis of operator split solution procedures applied to thermomechanical problems, Engineering Computations, vol.26, issue.1/2, pp.1-2205, 2009.
DOI : 10.1108/02644400910924870

URL : https://hal.archives-ouvertes.fr/hal-00691637

C. Kassiotis, A. Ibrahimbegovic, H. G. Matthies, and B. Brank, Stable splitting scheme for general form of associated plasticity including different scales of space and time, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.21-22, 2009.
DOI : 10.1016/j.cma.2009.09.011

URL : https://hal.archives-ouvertes.fr/hal-00691641

U. Küttler, C. Förster, and W. A. Wall, A Solution for the Incompressibility Dilemma in Partitioned Fluid???Structure Interaction with Pure Dirichlet Fluid Domains, Computational Mechanics, vol.195, issue.11, pp.417-429, 2006.
DOI : 10.1007/s00466-006-0066-5

U. Küttler and W. A. Wall, Fixed-point fluid???structure interaction solvers with dynamic relaxation, Computational Mechanics, vol.35, issue.6???8, pp.61-72, 2008.
DOI : 10.1007/s00466-008-0255-5

L. Tallec and J. Mouro, Fluid structure interaction with large structural displacements, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.24-25, pp.24-253039, 2001.
DOI : 10.1016/S0045-7825(00)00381-9

A. Legay, J. Chessa, and T. Belytschko, An Eulerian???Lagrangian method for fluid???structure interaction based on level sets, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.17-18, pp.17-182070, 2006.
DOI : 10.1016/j.cma.2005.02.025

G. Hermann, R. Matthies, J. Niekamp, and . Steindorf, Algorithms for strong coupling procedures, Computer Methods in Applied Mechanics and Engineering, vol.195, pp.2028-2049, 2006.

G. Hermann, J. Matthies, and . Steindorf, Partitioned strong coupling algorithms for fluid-structure interaction, Computers and Structures, vol.81, pp.805-812, 2003.

M. Mehl, M. Brenk, H. J. Bungartz, K. Daubner, I. L. Muntean et al., An Eulerian approach for partitioned fluid???structure simulations on Cartesian grids, Computational Mechanics, vol.1, issue.6, pp.115-124, 2008.
DOI : 10.1007/s00466-008-0290-2

P. Daniel, W. A. Mok, E. Wall, and . Ramm, Accelerated iterative substructuring schemes for instationnary fluid-structure interaction, First MIT Conference Computational Fluid and Solid Mechanics, pp.1325-1328, 2001.

J. T. Oden, T. Belytschko, I. Babuska, and T. J. Hughes, Research directions in computational mechanics, Computer Methods in Applied Mechanics and Engineering, vol.192, issue.7-8, pp.913-922, 2003.
DOI : 10.1016/S0045-7825(02)00616-3

L. Opencfd, Openfoam home page, 2000.

D. Peri´cperi´c, W. G. Dettmer, and P. H. Saksono, Modelling fluid-induced structural vibrations: reducing the structural risk for stormywinds, NATO Advanced Research Workshop, ARW 981641, pp.239-268, 2006.

S. Piperno and C. Farhat, Partitioned procedures for the transient solution of coupled aeroelastic problems ??? Part II: energy transfer analysis and three-dimensional applications, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.24-25, pp.3147-3170, 2001.
DOI : 10.1016/S0045-7825(00)00386-8

A. Roshko, Of the Development of Turbulent Wakes from Vortex Streets, 1952.

R. Michael, M. A. Ross, C. A. Sprague, K. C. Felippa, and . Park, Treatment of acoustic fluidstructure interaction by localized Lagrange multipliers and comparison to alternative interface-coupling methods, Computer Methods in Applied Mechanics and Engineering, vol.198, pp.9-12986, 2009.

M. Schäfer and S. Turek, Benchmark computations of laminar flow around a cylinder. Notes on numerical fluid mechanics, pp.547-566, 1996.

K. Takizawa, C. Moorman, S. Wright, J. Christopher, and T. Tezduyar, Wall shear stress calculations in space???time finite element computation of arterial fluid???structure interactions, Computational Mechanics, vol.37, issue.1, pp.31-41, 2010.
DOI : 10.1007/s00466-009-0425-0

T. Tezduyar, K. Takizawa, C. Moorman, S. Wright, and J. Christopher, Multiscale sequentially-coupled arterial FSI technique, Computational Mechanics, vol.37, issue.1, pp.17-29, 2010.
DOI : 10.1007/s00466-009-0423-2

T. E. Tezduyar, S. Sathe, R. Keedy, and K. Stein, Space???time finite element techniques for computation of fluid???structure interactions, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.17-18, pp.17-182002, 2006.
DOI : 10.1016/j.cma.2004.09.014

T. E. Tezduyar, S. Sathe, J. Pausewang, M. Schwaab, J. Christopher et al., Interface projection techniques for fluid???structure interaction modeling with moving-mesh methods, Computational Mechanics, vol.7, issue.1, pp.39-49, 2008.
DOI : 10.1007/s00466-008-0261-7

S. Turek and J. Hron, Proposal for Numerical Benchmarking of Fluid-Structure Interaction between an Elastic Object and Laminar Incompressible Flow, Lecture Notes in Computational Science and Engineering, vol.53, p.371, 2006.
DOI : 10.1007/3-540-34596-5_15

W. A. Wall, D. P. Mok, and E. Ramm, Partitioned analysis approach of the transient coupled response of viscous fluids and flexible structures, Solids, structures and coupled problems in engineering, proceedings of the European Conference on Computational Mechanics, 1999.

. A. Wolfgang, E. Wall, and . Ramm, Fluid-structure interaction based upon a stabilized (ALE) finite element method, Sonderforschungsbereich, vol.404, 1998.

H. Wang and T. Belytschko, Fluid-structure interaction by the discontinuous-Galerkin method for large deformations, International Journal for Numerical Methods in Engineering, vol.62, issue.11, pp.30-49, 2009.
DOI : 10.1002/nme.2396

C. Olgierd, R. L. Zienkiewicz, and . Taylor, The Finite Element Method, Solid Mechanics, Butterworth Heinemann, vol.2, issue.5, 2001.

C. Olgierd, R. L. Zienkiewicz, and . Taylor, The Finite Element Method, The Basis, Butterworth Heinemann, vol.1, issue.5, 2001.