Simulation of aerosols and gas-phase species over Europe with the POLYPHEMUS system. Part II: Model sensitivity analysis for 2011. - École des Ponts ParisTech Accéder directement au contenu
Article Dans Une Revue Atmospheric environment Année : 2010

Simulation of aerosols and gas-phase species over Europe with the POLYPHEMUS system. Part II: Model sensitivity analysis for 2011.

Résumé

This paper presents a multi-pollutant sensitivity study of an air quality model over Europe with a focus on aerosols. Following the evaluation presented in the companion paper, the aim here is to study the sensitivity of the model to input data, mathematical parameterizations and numerical approximations. To that end, 30 configurations are derived from a reference configuration of the model by changing one input data set, one parameterization or one numerical approximation at a time. Each of these configu- rations is compared to the same reference simulation over two time periods of the year 2001, one in summer and one in winter. The sensitivity of the model to the different configurations is evaluated through a statistical comparison between the simulation results and through comparisons to available measurements. The species studied are ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), ammonia (NH3), coarse and fine aerosol particles (PMc and PM2.5), sulfate, nitrate, ammonium, chloride and sodium. For all species, the modeled concentrations are very sensitive to the parameterization used for vertical turbulent diffusion and to the number of vertical levels. For the other configurations considered in this work, the sensitivity of the modeled concentration to configuration choice varies with the species and the period of the year. O3 is impacted by options related to boundary conditions. PMc is sensitive to sea- salt related options, to options influencing deposition and to options related to mass transfer between gas and particulate phases. PM2.5 is sensitive to a larger number of options than PMc: sea-salt, boundary conditions, heterogeneous reactions, aqueous chemistry and gas/particle mass transfer. NO2 is strongly influenced by heterogeneous reactions. Nitrate shows the highest variability of all species studied. As with NO2, nitrate is strongly sensitive to heterogeneous reactions but also to mass transfer, thermody- namic related options, aqueous chemistry and computation of the wet particle diameter. While SO2 is mostly sensitive to aqueous chemistry, sulfate is also sensitive to boundary conditions and, to a lesser extent, to heterogeneous reactions. As with nitrate, ammonium is largely impacted by the different configuration choices, although the sensitivity is slightly lower than for nitrate. NH3 is sensitive to aqueous chemistry, mass transfer and heterogeneous reactions. Chloride and sodium are impacted by sea-salt related options, by options influencing deposition and by options concerning the aqueous-phase module.
Fichier non déposé

Dates et versions

hal-00589251 , version 1 (28-04-2011)

Identifiants

  • HAL Id : hal-00589251 , version 1

Citer

Yelva Roustan, Karine Sartelet, Maryline Tombette, Edouard Debry, Bruno Sportisse. Simulation of aerosols and gas-phase species over Europe with the POLYPHEMUS system. Part II: Model sensitivity analysis for 2011.. Atmospheric environment, 2010, 44, pp.4219-4229. ⟨hal-00589251⟩
70 Consultations
0 Téléchargements

Partager

Gmail Facebook X LinkedIn More