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Abstract

Multi-view structure from motion (SfM) estimates the po-
sition and orientation of pictures in a common 3D coordi- |
nate frame. When views are treated incrementally, this ex-
ternal calibration can be subject to drift, contrary to global A
methods that distribute residual errors evenly. We propose af§
new global calibration approach based on the fusion of rel- ™
ative motions between image pairs. We improve an existing 2
method for robustly computing global rotations. We present
an ef cient a contrario trifocal tensor estimation method,
from which stable and precise translation directions can be
extracted. We also de ne an ef cient translation registra-
tion method that recovers accurate camera positions. These
components are combined into an original SfM pipeline.
Our experiments show that, on most datasets, it outperform
in accuracy other existing incremental and global pipelines.
It also achieves strikingly good running times: it is about 20
times faster than the other global method we could comparement can be optimized with sparse matrides [1] or using
to, and as fast as the best incremental method. More impor-GPU [36]. The number of variables can also be reduced by
tantly, it features better scalability properties. eliminating structure from the bundle adjustmént [26]. Fi-

nally some approaches use a divide-and-conquer approach

on the epipolar graph to reduce computations([32, 9, 30, 22].
1. Introduction However, incremental approaches are known to suffer

from drift due to the accumulation of errors and to the dif -

Photogrammetry, SLAM (simultaneous localization and culty to handle cycle closures of the camera trajectory. An
mapping) and SfM (structure from motion) reconstruct a additional weakness is that the quality of the reconstruction
model of a scene given a set of pictures. They compute bothdepends heavily on the choice of the initial image pair and
a 3D point cloud (the structure) and camera poses, i.e., po-on the order of subsequent image additions.
sitions and orientations (the calibration). Methods for that  Most global pipelines solve the SfM optimization prob-
can be divided into two classes: sequential and global. lem in two steps. The rst step computes the global rota-

Sequential SfM pipelines start from a minimal recon- tion of each view and the second step computes the camera
struction based on two or three views, then incrementally translations, together with the structure or not. The interest
add new views into a merged representation. The mostof separating the two steps is that the relative two-view ro-
widely used incremental pipeline is Bundlér [31]. It per- tations can be estimated quite precisely even for small base-
forms multiple bundle adjustments (BA) to rigidify the local lines, which is not true of relative translations. These ap-
structure and motion. As a result, it is a rather slow proce- proaches take into account the whole epipolar graph, whose
dure. Yet, some parts of the problem can be solved more ef-nodes represent the views and where edges link views hav-

ciently. Image matching can be made more scalable, e.g.,ing enough consistent matching points. All cycles of the
thanks to vocabulary tree techniques![24]. Bundle adjust- graph yield multi-view constraints, in the sense that the lo-

Figure 1. Dense mesh obtained with our global SfM pipeline on
he monument datasets (top: 160 images, bottom: 100 images).



cal relative motions in successive nodes of the cycle shouldthe rotation angle oRJ-T Rj Ri, measuring the discrepancy
compose into the identity when closing the cycle. Enforc- between the relative motion and the global motion. The so-
ing these constraints greatly reduces the risk of drift presentlution with the largest cardinal is kept. Angle thresholds of
in incremental methods. Moreover errors can be evenly dis-0:25 [12] or1 [25] have been used.

tributed over the whole graph, contrary to incremental ap-  Enqvistet al. [7] perform cycle removal based on devi-
proaches. But such global approaches suffer from the factation from identity. For this, the graph edges are weighted
that some two-view geometries, even when they have a largewith the numbers of inlier correspondences and a maximum
support of point correspondences, may fail to re ect the un- spanning tree (MST) is extracted. Cycles formed by the re-
derlying global geometry, mainly because of mismatches, maining edges are considered. A cycle is kept if the de-
e.g., due to repetitive structures that create outliers. Addi—viatiorb from identity over the cycle, normalized by a fac-
tionally, as the minimization is based on the structure andtor 1= | wherel is the cycle lenth, is small enough. The
the reprojection errors, the space and time requirements camethod is highly dependent on the chosen MST; if this tree
get very large, even for limited-size datasets of images. is erroneous, estimated rotations are wrong.

In this paper we present a new robust global StM method ~ Zachet al. [37] use a Bayesian inference to detect incor-
for unordered image sets. The problem complexity is kept rect relative rotation using cycle errors. A limit is set on
low using relative motions that can be merged very fast. the number of sampled trees and cycles to keep the problem
We rst solve the structure problem at a local scale (2 and tractable. The maximal cycle length is set to 6, also to avoid
3 views), then merge the resulting relative motions into a taking into account uncertainties w.r.t. cycle length.
common global coordinate frame. We assess the ef ciency . .
and precision of our reconstruction pipeline on scenes with ONCe global camera rotatioris are estimated, global
ground truth calibration and on challenging datasets with fanslationsTi can be computed. There are two main ap-
false epipolar geometries. Compared to other approaches?roa‘:hes’ nding translations alone or with the structure.
we achieve better or similar precision with signi cantly Estimating translations alone. Govindu [10] proposes a
shorter running times and better scalability. Fiqgre 1 illus- method for recovering the unknown translatidagrom the
trates meshing [34] after calibrating with our pipeline. heading vectors; , extracted from the estimated essential

matrices. He solves a least square problem with linear equa-
1.1. Related work tions in the unknownd; and relative unknown scale fac-
Estimating global rotations. Given the relative rota- tors j: jtj = T; T;. Using random sampling, he tries
tionsR;; between views andj extracted from the essen- to nd the valid set of edges that best represents the global
tial matrices, computing the global rotation of each view  motion [12].
consists in solving the systeRy = R; R; for alli;j . This Sim et al. [29] propose a solution based on the head-
topic is covered by Hartlegt al. [14]. ing vector extracted from the trifocal tensor that minimizes

This rotation averaging task can be performed by dis- the angular error between the heading vector and the global
tributing the error along all cycles in a cycle basis, as camera position. The advantage of such a method is that
done by Shart al. [28] for the alignment of range scans. they use a compact formulatio ( number of camera vari-
Approximate solution using least square minimization for ables) but they are highly dependent on the quality of the
multi-view registration is proposed by Govindu[10], reused initial translation estimates. Arie-Nachimsenal. [3] use
by Martinecet al. [18], and extended with semi-de nite  a least square minimization of the epipolar equation to nd
programming([3]. Alternatively, the averaging can be per- the unknown translations. The obvious drawback is the as-
formed in the SO(3) Lie-group [1L, 14]. Crandatlal. [5] sumption that there is no outlier correspondence as all cor-
use a cycle belief propagation, but they rely on known ori- responding point pairs are used. Moreover, Rodrigetez
entations, which do not make it suitable in the general case al. [26] show that this method can handle neither colinear

: . . series of views nor shared optical centers.
Cycle consistency. As relative R;; estimates may con-

tain outliers, rotation averaging has to be robust. Given Estimating both translations and 3D points. The joint

the camera epipolar graph, the actual task is to identify estimation of translations and 3D points can be formulated
both the global rotations and the inconsistent/outlier edgesusing second-order cone programming expressing the prob-
(false essential geometry). Two classes of methods standem with thel; norm, as proposed by Hartley and Shaffal-
out, based on spanning trees or cycles. The spanning treézky [15], and later generalized [116]. Such methods rely on
approaches [12, 25] are based on the classic robust estimadpper constraints on the residual error of feature points and
tor scheme, RANSAC. Random spanning trees are sampledrapidly involve a large number of unknowns. They are com-
and global putative rotations are computed by composingputationally and memory expensive. The solution is glob-
relative rotations while walking a spanning tree. The re- ally optimal thanks to multiple convex optimizations, using
maining edges, which create cycles, are evaluated based ohisections of a quasi-convex problem.



Dalalyanet al. [6] deal with outliers with formulation relative ones. Our experiments show its robustness,
usingl; constraints instead db cones. It relies on two accuracy and scalability (SectiEIﬂS)
linear programs, the rst one identifying outliers, and the
second one solving translations and 3D structure on the se2. Robust estimation of global rotations
lected inliers. It avoids the use of the non-negative slack : . 0
variables in the single step procedure used by Olssah For matching pointX andX “in imagesl; and|; re-
[25] as adding one slack variable per measurement rapidlyspectlvely, the two-view epipolar constraint can be written
increases the problem size with the number of images. (K; 2XX)TE; (K, IX9=0: (1)
Thosel; problems can be solved faster. Sl [27] . . L . .
nd a global solution by using a growing feasible subset The ve_-pomt algorithm of Nistér[[2B] mserteq as minimal
while all the residual errors of the measurements are underSOIVer in @ RANSAC procedure robustly estimates the es-
the precision of the subset. This approach is faster becaus€€ntial matricessjj = [t; ] Rj, from whichR; can be
only a subpart of the data is fed to the minimization. extracted, together with thﬁrecﬂontii , since the scale is
However, it is not robust to outliers. Agarwed al. [2] test ~ arPitrary. Four different motiongR;; ; t;j ) actually have to
different bisection schemes and show that the Gugat algo-°€ €sted; the one yielding the largest count of points sat-
rithm [13] converges faster to the global solution. Za&th isfying the cheirality constraint (positive depth of the 3D

al. [38] use a proximal method to speed up the minimization point) is retained. It is important to note that the rotation
of such convex problems. accuracy is nearly insensitive to the baselifie [7], contrary to

) ) the translation direction. Besides, although the camera rota-
Other approaches. Martinecet al. [18] use their global 55 hetween connected views can be chained, the relative

pipeline many times to iteratively discard two-view geome- y.ongjations cannot since they are available up to a differing
tries with largest residuals. To keep good running time, they |, ninown scale factor; .

compute the translation and structure just on a few point
pairs: each epipolar geometry is representeq b)_/ 4 pointsusing the edge disambiguation of Zaghal. [37]. As pre-
only. Courchayet al [4] use a linear parametrization of &  jiminary experiments showed that a number of outlier rota-
tree of trlfogql tensors over thg eplpqlar graph t_o solve the ions could pass Zackt al's test, we made two improve-
camera position. The method is restricted to a single cycle. ants. First, we adapted the cycle error probability using

We identify inconsistent relative rotations in the graph

1.2. Our global method for global calibration the regults of Enquiset al. [7], weighting errors by a fac-
) ) ) tor 1= | wherel is the length of the cycle. Second, we it-
Our input is an unordered set of picturels;;:::;lng. erate Zaclet al.'s algorithm until no more edge is removed

The internal calibration parametefs are assumed known  py the Bayesian inference procedure. Finally, we check all
for each camera: our goal is to robustly recover the global the triplets of the graph and reject the ones with cycle devia-
pose of each camera (absolute motion rotaRpand trans-  tion to identity larger than 2 Experiments in Tablg] 1 show
lation T;) from relative camera motions (rotatid®; and  that half of the outliers can remain after the rst Bayesian
heading translation vectey ) between imaget andl; . inference, which motivates our iterated elimination.
Our contributions are the following: Global rotations are computed as done by Martirec
1. We show that an iterative use of the Bayesian infer- al. [18], with a least-square minimization that tries to satisfy
ence of Zaclet al. [37], adjusted with the cycle length  equationRR; = Rj R;, followed by the computation of the
weighting of Enqviset al. [7], can remove most outlier  nearest rotation to cover the lack of orthogonality constraint
edges in the graph, allowing a more robust estimation during minimization.
of absolute rotationR; (Sectior] 2).

2. We present a new trifocal tensor estimation method ’ Dataseh #lterations ‘ 1 ‘ 2 ‘ 3 ‘ 2 check\
based onl; norm, resulting in a linear pro- Orangerie (Fig. p) 8141 9
gram, which, used as minimal solver in an adaptive | Opera (Fig} [L top) 713 — 125
RANSAC algorithm, is ef cient and yields stable rela- Pantheon (Fid.|1 bottom) 9 | 2 [ — 7

tive translation directiong; (Sectior] B).
3. We propose a new translation registration method, that
estimates the relative translation scalgs and abso-

lute translationsT;, based on thé; norm, resulting 3, Relative translations from trifocal tensors
also in an ef cient linear program (Sectiph 4).

Table 1. Number of edges rejected by Bayesian inference iteration.

To improve robustness and accuracy when computing

4. We puttogether these ingredients into an SfM pipeline the relative motion between cameras, we consider triplets

(Sectior{ §) that rst cleans up an epipolar graph from
outliers, then computes the global motions from the  More extensive experiments are provided as supplementary material.




of views instead of pairs as usual. We show in Sedfioh 3.2| # 3D Points|  Running time (s) Angle accuracy ()
that this yields a precision jump of an order of magnitude in Slack variables AC | Slack variables AC
the estimated translations. 200 1.37 0.09 0.07 0.03
400 4.06 0.11 0.06 0.03
3.1. Robust trifocal tensor with known rotations 600 7.94 0.13 0.04 0.02
Given estimated global rotatioRy, as computed in Sec- 800 13.1 0.15 0.03 0.02
tion [, we estimate a “reduced” trifocal tensor using an 1000 19.6 0.16 0.03 0.02

adaptive RANSAC procedure t_o,be, _rObUSt to outllgr €O Taple 2. Required time and accuracy (average angle of translation
respondences. Rather than minimizing an algebraic erroryjrections with ground truth) in robust estimation of trifocal tensor
having a closed form solution as Siet al [29], we mini- with the global formulation using slack variablés][25] and aur
mize thel; reprojection error of 3D points; comparedto  contrario method (linear program combined with AC-RANSAC).
the observed pointS(X; ; Y} )gi2f 1:2;3¢ in the three images:

1y, 4 ¢l 2v . 4 12 In these formulasy andh are the dimensions of the images

vy= o RIXptt o REXp+ ) " . . o
(ti; X)) = (X Bx. + Y RX 1) ande is the prob_ablhty _of a point having repro_Jectlon er-
P : P @) ror at most ¢. X; is obtained by least-square triangulation

of the corresponding point(x| ;Y| )gizr 1.2.3¢- K repre-
sents a hypothesized number of inliers.[Th &M )¢ #is
therefore the probability that the 4 minimal reprojection

wheret; is the translation of view andt its components.
The tensor is found by the feasibility of this linear program:

minimize errors of uniformly distributed independent corresponding
g X o points in the three images (our background model) have er-
subjectto (ti;X;) ;  8i] 3) ror at most i, playing the role of the optimal of (3) for
REX; +t8 1, 8iij the inliers. The other terms ifi](4) de ne the number of sub-

sets ofk inliers among thex 4 remaining points. Thus
NFA(M; k) is the expectation of random correspondences

The second constraint ensures that all 3D points are in fronthaving maximum error = . The trifocal tensoM is

of the cameras and the third one de nes an origin for the deemed meaningful (unlikely to occur by chance) if:

local coordinate ;yster_n of the triplet of views. _ NFA(M)= min NFA(M:k) 1: (6)

In general, using a linear program can lead to two issues. 5 kon

First, as the number of variables increases, the solving timej practice, we draw at mo${ =300 random samples of

grows polynomially[[27]. Second, robustness to outliers is 4 correspondences and evaluate the NFA of the associated

typically achieved with slack variables [25], which makes models. As Moisaret al. [19], as soon as a meaningful

the problem even bigger. model M is found, we stop and re ne it by resampling

Our approach consists in computing the tensor usingN=10 timesamong the inliersof M . If no sample satis-

a small-size linear program as minimal solver with four es (), we discard the triplet. Finally, we re ne the trans-

tracked point across the three views, in conjunction with |ations and thé inlier 3D points by bundle adjustment.

the AC-RANSAC framework([21] to be robust to noise and  Table[2 evaluates the computation time and accuracy of

outliers. This variant of RANSAC relies oa contrario  our robusta contrario trifocal estimation compared to the

(AC) methodology to compute an adaptive threshold for equivalent global estimation with slack variablés][25] on

inlier/outlier discrimination: a con guration is considered synthetic con gurations. A uniform 1-pixel noise is added

meaningful if its observation in a random setting is unex- to each perfect correspondence &¢d outliers are intro-

pected. While global; minimization aims at nding a  duced. We evaluate the accuracy of the results (angular er-

solution with the lowest value, found by bisection, AC-  ror between ground truth and computed translation) and the

RANSAC determines the number of false alarms (NFA):  required time to nd the solution. The global solution nds
S a solution that ts the noise of the data, but AC-RANSAC

NFA(M;k)=(n 4) K 4 e(M) 4 (4) is able to go further and nd a more precise solution.

t; =(0;0;0):

: _ _ . 3.2. Relative translation accurac
whereM is a tested trifocal tensor obtained by the minimal y

solver using four random correspondences; 0:5 pixel, Following experiments of Enqvigt al. [7] concerning
n is the number of corresponding points in the triplet, and two-view rotation precision, we demonstrate that using a
whereex = (=max(w; h) depends on thk-th error: trifocal tensor can lead to substantial improvement in the
relative translation estimation. To assess the impact of small
k = k™ smallest element dimax (ti(M);Xj)g: (5) baseline, a simple synthetic experiment is performed. A set



of fty 3D points are randomly generated infa1; 1]° cube 47’ ."
and 3 cameras are placed on a circle at distance 5, at angles .4:\ .L, e

0, and2 respectively (see Figufg 2, left). We vary

from 1 to 20 to simulate small to medium baselines. A Akjthj trj
uniform 1-pixel noise is added to image projections. The R”Ti.‘ < /"‘T? """""" ’—-R.ijk
relative translation of the camera is estimated using AC- big e ) <y

RANSAC with a 5-point solver (essential matrix) and with Aijtii

the AC-RANSAC trifocal tensor with known rotations. We

compare the angular error w.r.t. the ground truth (since the
reconstruction scale is arbitrary) for the directions of the
three relative translations and average the results over 5
runs (see Figurg] 2, right). With an increasing baseline, the
accuracy improves with both methods. However, our trifo-
cal estimation performs much better, with good results even

Figure 3. Top left: 3 local tensors. Top right: Merged translations.
Bottom: Our approach minimizes Euclidean distances (green ar-
d'ows) while Sim and Hartley [29] minimize the (blue) angles.

following linear program yields the global optimal solution:

at small baselines. minimize
fTigisf 4 gj
- - - subjectto T Ry Ti jtjj ; 8ij (g
\ | | i 1 80
& ﬁ j T, =(0;0;0):

In our case, we may have different translation directigns
foragiven(i;j ) ifit belongs to several triplets (see Fig@]e 3,
top). We thus consider; for a tripet containing(i;j ).

A 2 Besides, the relative scales are per triplet)(rather than
5 . : per edge (j ). We actually solve the following problem:
minimize
fTi gi if g ;
Figure 2. Left: camera position (circle) relative to synthetic scene subjectto jTj Rj T t j ;o 8:8(i5j) 2

(top) in[ 1;1J cube at distance 5. Right: translation direction

error relative to ground truth as a function of camera angia L 8
degrees: using a standard essential matrix estimation (red) and us- T1 =(0;0;0):
ing our trifocal tensor (green). 9)

Compared to Govindu's approach [10], that does not en-

force cheirality conditions, we are sure to nd a global op-

4. Translation registration timum. Also, we minimize here a linear program, which is
_ _ _ ] _ much faster than the SOCP of Sim and Hartley [29]. They
Given a set of relative motions pai®;; ;tj ) (rotations  yse angular errors, whereas our method involves simpler
and translation directions), we want to nd the global lo- constraints using Euclidean distance (see Figlire 3, bottom).

Figure[3. We are thus looking for global translations and 5. The global reconstruction process
#1; scale factors; that reconcile the different translation

directions into a g|oba| coordinate frame: We now show how to use these elements in a pipeline to
o perform robust and accurate global calibration. Our method
KT Ry Ti  jtjk=0; 8ij (7)  consists in the following steps: (1) build the epipolar graph

Due to noise, the set of equatiofig (7) cannot be satis ed of matching image pairs and estimate the essential matrices;
exactly but the solution of the linear set of equations can (2) check rotation consistency, performing Bayesian infer-
be optimized in the least square serseé [10]. The problem is€"C€S on the graph and computing global rotations on the

that, with this formulation, the;; cannot be constrained to resulting graph; (3) compute relative translations from fri-
be positive to respect cheirality. focal tensors; (4) register translations in a global coordinate

Our approach consists in optimizing equatidfs (7) underfram,e; (5) compu?e coarse triangulatgd structure gnd re ne
thel; norm. As the solution is invariant under translation rotations, translations and structure via bundle adjustment.
and scaling, the degrees of freedoms are removed by addingtep 1: relative pairwise rotation. We use SIFT match-
positivity constraints over the; (scale ambiguity) and set-  ing [17] and robusta contrario essential matrix estima-
ting the rst camera at origin (translation ambiguity). The tion [21]. An upper bound of the possibdecontrario pre-



cision is set to 4 pixels. The epipolar graph is actually
split into 2-edge-connected components, for which separate
global calibrations can be computed. The resulting poses
and structures are later merged (rotated, translated, scaled)
based on standard pose estimation/resection.

Step 2: rotation consistency. We use our adapted Zach
et al's Bayesian inference [37] to remove outlier rotations
(see Sectiof|2). As in Step 1, the graph is checked and
cleaned if necessary. We list the cycles of length 3 in the
graph as possible triplets. Those having a chained rotation
whose angular discrepancy to identity is greater thaar2
discarded. Finally, the global rotations are computed using
a sparse eigenvalue solver as done by Martiteal. [18], Figure 4. G]obal translation accuracy as a function of noise in the
which has been showfl[8] to be as ef cient as constraining 9'0Pal rotations.

the orthogonality during minimization.

Step 3: relative motion computation. We compute a rel- 6. Results

ative translation estimate for each edge of the graph, know- 14 assess our method, we used Streehal.'s bench-

ing its rotation. For this, we rst buld a list of all graph  mark [33], which provides ground-truth camera poses. We
edges. Then for each edge, we try to solve as describedysg experimented with challenging datasets having multi-
in Sectior[ B the triplet with the largest support of tracks to yje false epipolar geometries, mainly due to repeated parts.
which the edge belongs.ﬂTracks are computed by using théye compared with incremental methods, Bundlet [31] and
fast union- nd approachi [20]. If the tripletis solved, we val-  \ssyalsfm [35], as well as global methods, that of Olsson
idate the three edges that belong to the tensor and removg g Enquist[25] and Arie-Nachimsaet al. [3]. All re-
them from the list. If trifocal tensor estimation fails, we  ported gures have been obtained with the authors' software
continue with other triplets containing this edge, if any, in o an 8-core 2.67 GHz machine, except for Arie-Nachimson

decreasing order of the number of tracks. The process stopgy g, for which only published results are availailé [3].
when the list of edges is empy. This step not only nds rela-

tive translations but also determines coherent 3D structuresSensitivity to rotation noise. To study the sensitivity of
per triplet. One advantage of this approach is that triplets OUr global translation estimation w.r.t. noisy global rota-
can be computed in parallel. This method requires havingtions, we feed the translation registration process with the
a graph covered by contiguous triplets, which might not al- ground truth rotations of the fountainP11 data$et [33] al-
ways apply. However, it is often the case in practice, in part tered by a small random rotation whose axis is uniformly

thanks to ever-improving feature detector repeatability. ~ Sampled on a sphere and whose angle is uniformly drawn
between 0 and a given maximum angle. Figure 4 shows

that the nal error is almost linearly dependent on the noise
level. Similar results are shown by Sim and Hartleyi [29].

Step 4: translation registration. We integrate the rela-
tive translation directions and compute global translations
using thel; method of Sectiop|4.

Step 5: nal structure and motion. The preceding steps
provide a good estimation of the motions, as well as struc-
tures per triplet. We link points in these structures by fea-
ture tracking[[20] and compute 3D point positions per track
by triangulation. This global structure and the translations
are then re ned by bundle adjustment (BA) using the Ceres
solver [1]. Interestingly, the BA converges in few iterations,
which assesses the quality of our initial estimate. A nal
BA is used to re ne the structure and camera rotation and
translation to handle noisy rotation estimates of Step 2. Pro-Running time.  Table[3 (right) reports the running time of
ceedings in two such steps, rstwith a partial BA with xed calibration (estimation of camera poses and 3D structure)
rotations, then with a global BA, is inspired by Olsson and after epipolar graph computation. Our global method is 5 to
Enqvist's approach [25]. The idea is to prevent compensa-11 times faster (16 to 26 times when parallelized) than that
tion of translation errors in the rst step by rotation adjust- of Olsson and Enqvist [25] (Matlab code with time-critical
ment, since rotations are more reliable. According to our parts in C++). It is even competitive with the fastest incre-
experiments, the two-stage BA improves the precision. mental method, which is GPU- and multicore-optimized.

Accuracy. Table[3 (left) shows the average baseline er-
ror of several incremental and global methods on Strecha
et al's dataset[[33]. A 3D similarity registers the ground
truth and the computed coordinate frame. While our accu-
racy is slightly better or comparable to the top performer
on the rst four datasets, it is remarkably better on the Cas-
tle datasets, which feature a loop in a courtyard. One of
the reasons is a good rejection of outlier data (wrong point
correspondences and false epipolar geometry).



Accuracy (mm) Running times (s)
Ours|Bundler| VSfM | Olsson Arie || Ours| OursP Bundler VSfM | Olsson| Ratio Ratio
Scene [B1] | 39] | [25] | [3] [31] | [35] | [25] ||[25]/Ours|[25])/OursP
FountainP11| 25| 7.0 76 | 22 |48 12 5 36 3 133 11.1 26
EntryP10 59| 55.1 | 63.0| 6.9 |[N.A.| 16 5 16 3 88 55 17
HerzJesusP8| 3.5 | 16.4 | 19.3| 3.9 |N.A.| 6 2 10 2 34 5.6 17
HerzJesusP255.3 | 215 | 224 | 57 | 78| 47 | 10 100 12 221 4.7 22
CastleP19 |[25.6/ 344 | 258 | 76.2 [N.A.|| 20 6 78 9 99 4.9 16
CastleP30 |[21.9] 300 | 522 | 66.8 [N.A.|| 55 | 14 300 18 317 5.7 22

Table 3. Left: Average position error, in millimeters, w.r.t. ground truth for different increméntal [31, 35] and @lokdl [25, 3] SfM pipelines,
given internal calibration. Right: running times in seconds and speed ratio. OursP means our parallel version.

*agus®

=

Figure 5. Top: excerpt of the Orangerie dataset. Center: BundlerFigure 6. Opera dataset (160 images). Top: input epipolar graph
camera positions (cycle failure), and ours. Bottom: input epipolar (Corrupted by facade symmetries), our cleaned graph, and calibra-
graph, our cleaned graph, and mesh obtained from our calibration fion point cloud. Bottom: orthographic fagade and close-up.

Moreover we have shown that triplets of relative transla-

repeated or similar scene portions (similar facades, includ-t'gnstfrom known rotta?fonj Cb?n be cor’tnptgte? W'thTahQOOd’
ing mirror-imaged), which cause false geometries in the adaptive accuracy at afforaable computation ime. These re-

epipolar graph. We show the initial graph, the graph <:IeanedSLIItS hav_e been support_ed by theoretlcal arguments as well
of false edges thanks to repeated Bayesian inference, an@s experimental comparison on synthetic and real datasets.

the camera positions. For the Orangerie dataset (61 images, Our pipeline presents_, many advantage_s. It computes_ a
see Figuré]5), Bundlef [31] is unable to close the loop and stable structure by merging the tracks at trifocal level and is
misplaces several viewé, contrary to our method. For thealmos.t outlier free (Ie;s_risk of mgr.ging false epipolar ge-

Opera dataset (160 images, see Fijire 6), running times (afpmetnes). As the chain is global, it is not necessary to pro-

ter feature detection and matching) are strikingly different: Yide an initial pair — the highly problematic initial seed of

Bundler runs in 3 hours while we calibrate in 7 minutes mt_:remental methOd_s‘ Thanks to the_ QOOd quality of the rel-
(4 minutes for the parallel version). In fact, Bundler spends ative translation estimates, the precision of the global trans-

alot of time in the repeated bundle adjustments (BA); while '2tion provides a fairly good overview of the camera posi-

they take less than one minute for the rstimages, they take gons even gefore re nemt:]nt tkllrgulgh bundle a?“:ftment; v:e
about ten minutes for the last ones. Our running times and ho no_lt_r?eef‘ to comp(ljjt;:t ﬁg 0 al structur;: 0 tf € scene for
residual information are detailed in TaBle 4. that. This is con rmed by the very low number of iterations

performed by the bundle adjustment. Our experiments show
. that the issue that is limiting the precision of our global ap-
7. Conclusion proach is the precision of the global rotations. We believe
that our method could work at city scale even on a standard
computer, provided there is enough RAM for the nal bun-
edIe adjustments, which is optional.

Challenging datasets. We tested with datasets featuring

We have presented a global Structure from Motion sys-
tem for large-scale 3D reconstruction from unordered im-
age sets. We have shown that the global calibration can b
performed by globally merging local relative estimates, pre- Acknowledgments. This work has been carried out in
serving robustness and accuracy while ensuring scalability.IMAGINE, a joint research project between Ecole des Ponts



Triplets Translation registration BA, BA, Total
Dataset #possible| #solved | time | #; time #iter titer time
FountainP11 78 28 2 84 | <1|5 10%]075] 2 0.26| 3 0.25 5
HerzJesusP25 522 102 4 306 | <1|5 104|085 2 |047| 4 |046| 10
CastleP30 540 103 6 309 1 3 103 | 23 2 051 3 0.27| 14
Opera 3054 588 30 | 1764| 41 |1 102 |547| 5 1.05| 10 | 0.48| 207

Table 4. Running time (s) with our parallel version, and mean reprojection er(pigels) of all 3D points of all cameras.

ParisTech (ENPC) and the Scienti ¢ and Technical Centre [19]
for Building (CSTB). It was supported by Agence Nationale
de la Recherche ANR-09-CORD-003 (Callisto project).
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