Hydro-mechanical behaviour of compacted bentonite-sand mixture used as sealing materials in radioactive waste disposal
Simona Saba, Q. Wang, Anh Minh Tang, Yu-Jun Cui, Jean-Dominique Barnichon

To cite this version:
Simona Saba, Q. Wang, Anh Minh Tang, Yu-Jun Cui, Jean-Dominique Barnichon. Hydro-mechanical behaviour of compacted bentonite-sand mixture used as sealing materials in radioactive waste disposal. Mechanics and Physics of Porous Solids (MPPS)- A tribute to Prof. Olivier Coussy. 18/04/2011-20/04/2011, Apr 2011, Champs sur Marne Marne La Vallée, France. hal-00588065

HAL Id: hal-00588065
https://hal-enpc.archives-ouvertes.fr/hal-00588065
Submitted on 22 Apr 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
HYDRO-MECHANICAL BEHAVIOUR OF COMPACTED BENTONITE-SAND MIXTURE USED AS SEALING MATERIALS IN RADIOACTIVE WASTE DISPOSAL

S. Saba1,2, Q. Wang3, A.M. Tang3, Y.J. Cui3, J.D. Barnichon2
1 UR Navier/CERMES, Ecole des Ponts ParisTech, F-77455, Marne la Vallée Cedex
2 IRSN/DE/SARG/LR25, BP 17, F-92262 Fontenay-aux-Roses Cedex
simona.saba@enpc.fr, wangq@cermes.enpc.fr

- In order to verify the safety of the geological high-level radioactive waste disposal, IRSN has undertaken the SEALEX research project to control the long term performance of swelling clay based sealing systems. Compacted bentonite-sand mixture is one of the most appropriate sealing material studied in this project because of its low permeability and good swelling capacity.

- Once installed, this material will be in contact with the host-rock pore water and start swelling to close all the gaps in the system (internal pores, rock fractures and technological voids) and then, swelling pressure develops. In parallel with the in-situ SEALEX project, laboratory experiments are performed to investigate the sealing properties under this complex hydro-mechanical condition taking into consideration the effect of technological voids.

Two Approaches

Study the buffer as a homogeneous material

- Swelling pressure
 - No effect of technological void on the swelling pressure
 - The final dry density controls the swelling pressure

- Saturated hydraulic conductivity
 - Obvious effect of technological void
 - The hydraulic conductivities with technological void are higher than those determined in constant volume condition
 - That evidences the preferential pathway of water in the zone of technological void (filling material is more permeable)

Study the buffer as a non-homogeneous material

- Blocks start being saturated from their surface and swell forming a loose gel that will grow to fill the technological void.

- The state of the gel formation is changing with time in parallel with a constant evolution of the hydro-mechanical conditions.

- A better understanding of this changing gel formation is essential in assessing the performance of the total sealing structure.

Methodology

- Follow the swelling of a block immersed in water by time-lapse photography
 - Image processing to investigate the kinetics of swelling and its limitations
 - Compare with a free swell test
 - Camera controlled via PC and takes photos automatically after a fixed time interval

Mock up test

- Objective:
 - Investigate the recovery capacity of compacted bentonite-sand mixture when considering a 14% of technological void
 - Provide useful information about the effectiveness of field design
- Methodology: Design a small scale (1/10) of the in situ SEALEX experiment model test

Perspectives

- From a mechanical point of view, due to this non homogeneity, the swelling pressure generated radially will be compared to the axial one
- Investigation of an anisotropic behavior

- The annular void have been filled in 2h30min
- The filling material has different state than the central material
- The filling material is a loose gel which state is changing with time
- Generation of lateral swelling pressure

References

(2) Gatalin, C. 2008. ESINER Project Models Selection and THM Characterisation of the Buffer Material, ESINER International Conference, 6-9 June 2008, Czech Technical University – Prague, Czech Republic