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The open question of shear forces in heterogeneous pl

I Thick or Thin plates?

I Thin Plate { Kirchho -Love { ' = Us. :
asymptotic derivation, transverse shear e ects neglected
(Kirchho (1850); Love (1888); Ciarlet and Destuynder (1979))

I Thick Plate { Reissner-Mindlin { 6 Us. :
axiomatic and controversial. Natural boundary conditions!
(Reissner (1944); Hencky (1947); Mindlin (1951))

.1 plates are generalized continual

A Lelee (Laboratore Navie) S SRS



The open question of shear forces in heterogeneous pl

I Thick or Thin plates?

I Thin Plate { Kirchho -Love { ' = Us. :
asymptotic derivation, transverse shear e ects neglected
(Kirchho (1850); Love (1888); Ciarlet and Destuynder (1979))

I Thick Plate { Reissner-Mindlin { 6 Us. :
axiomatic and controversial. Natural boundary conditions!
(Reissner (1944); Hencky (1947); Mindlin (1951))
I Deriving formally Reissner-Mindlin plate model from asymptotic
expansions?

) The Bending-Gradient plate model. .
A. Letee (Laboratoire Navier)  [ITHe Bending Gradient theory 56596 Juily 20151/ 85



- ThesDProbem
Contents

I The 3D Problem
The asymptotic expansions for a laminated plate
The Kirchho -Love plate model
The Bending-Gradient plate model
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BN
The 3D problem con guration
g3

| L+
2

[
€
t

ID

C'(x3): even
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BN
The 3D problem equations

i = Cja(X3)"la on " “x =C'(x3):" x on .
t — L .
iz= fi on!t:
L E—

ij = Uiy on °
uy=0 on@!" ] t=2t=2[

TV AR 00

1
c
%]
=
o
>

8
j;j =0 on % tr. =0 on

u=0 on@" ] t=2t=2]

I monoclinic and eveIC':

C' 4= Clg =0 ) pure bending:

s =102, I ugand ‘';even/xs
| symmetrically laminated plate ' u', ' and 33 odd/ X3
I symmetric transverse load

f = fse,

DQC
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BN
Proof of skew symmetry

Let u'’ be the image olu' by the symmetry with respect to the
(X1; X2)-plane

1
. +Uj(X1; X2, X3)
UT (X5 X2 Xa) = @ +ub(xe; % X3) A

ug(Xe; Xo;  X3)
Obviously,u®=0 on @!* ]

w0 — 0 s

=u’ Sr is

t=2;t=2[. Its corresponding strain

0
nt "t nt
0 11 12 13
(XuXarxg)= @ ", L, L A (XX Xa)
nt "t nt
13 23

33
A. Letee (Laboratoire Navier)



Proof of skew symmetry

. 0 w0 .
Its corresponding stress'” x = C'(x3):"" x is:
2 03 2 32 ,.0 3
t t t t t "t
101 C1111 C1122 C1112 0 C1133 101
t t t t "t
202 C2222 C2212 0 C2233 202
t t t "t
127 = Chopp O Ci233 2 12
t t t 1"t
13 Ciziz Cizpz O 13
t t "t
23 SYM Cas O 2 23
t n
33 Cas3s 33
BecauseC ' (x3) is even and monoclinic, then:
0 1
t t t
0 11 12 13 A
Cuixexa)= @ 4, by b A(xaixe Xa)
t t t
13 23 33

A. Lelee (Laboratoire Navier)



Proof of skew symmetry

Finally, the balance equation ®r =0is easy to check and we have:

Q3 = f=
Therefore,
7t0 )7( = gt )7( : nto )7( nt
Hence, 0 1 0
+Uj(X1; X2, X3)
+Uy(xe; x2; Xa) A= @
u§(x1; X2;  X3)

A. Letee (Laboratoire Navier)

|L.
f3§3 on!" :

Ul (X1; X2; X3)
Ub(Xe; Xo; Xa) A i
Uu§(X1; X2; X3)



BN
Variational formulation
The set of statically compaéible stress elds is:

< '
sc®i .

-~ =0on ‘'
t — L .
e, =fonl";
The set of kinematically compatible displacement elds is:
nt — ut Sr on t
kC®e oo
u=0on@!" ] t=2t=2[
The strain and stress energy densi® andw P are respectively given
by:
1 1
D n - T t .. D - = t
w 5 ch:"; w > S
with:

S[

1
= C!
A. Letee (Laboratoire Navier)



BN
Potential energy

n 0
pP "t = min PP "
"2KCDit
The potential energyP® is given by:
z z
P:D n — WD " d t
t
u

fa ug +uy dit
1L

= u(xy; X2;

lower faces of the plate.

t=2) are the 3D displacement elds on the upper and

A. Letee (Laboratoire Navier)



BN
Complementary energy

n o
pP = mn PP
25CDit

The complementary potential energy L given by:

Z
P:'D

d t
At the solution (Clapeyron's formula):

P33 nt +P33 t

=0

A. Letee (Laboratoire Navier)



BN
Building a plate model?

For typical widthL and thicknesg, let £ ! 0
|

Solve a 2D problem, called the \plate problem"
[

I \fair" 3D displacement localization
\fair* 3D stress localization

Exercice: Trial from plate equilibrium equations...

A. Letee (Laboratoire Navier)



- Theasympiofic expansions for a laminated plate
Contents

The 3D Problem
I The asymptotic expansions for a laminated plate

Example
Scaling of the 3D problem
The expansion

The Kirchho -Love plate model

The Bending-Gradient plate model

Applications of the Bending-Gradient theory to laminates

Periodic plates
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~ Theasympiofic expansions for a laminated plate  Example
Contents

The 3D Problem
The asymptotic expansions for a laminated plate
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Scaling of the 3D problem
The expansion
The Kirchho -Love plate model
The Bending-Gradient plate model
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. Theasympoicepansionsforalaminated plate Bample
Di erential system depending on a small parameter

We want to solve the following di erential equation on ;[Q]:

u4x) ux)=0;u(@=0;u(d)= a
where > 0 is a small parameter.

The solution is trivial:

sinh P X

u (x)= aw
The limit of u (x) as goes to 0 is:

!lrr(;+ u (x)= ax

A. Letee (Laboratoire Navier)



. Theasympoicepansionsforalaminated plate Bample
Taylor's series
Using Taylor's series:

- o B P 1 Py 3
sin X = 1 + 3 +
0 p_1 p_-3
sinh = 1 + 3 +
We obtain:
3 5 3
_ 1 2 X2 X X° X
u (x)= ax+ a 3 +a =)

A. Letee (Laboratoire Navier)



~ Theasympiofic expansions for a laminated plate  Example
The method
|

Write u (x) as a series:

u (x)= W+ tutx)+

oo+ U () +
whereu' are unknown functions.
[

Inject this series in the di erential system
ux) u(x)=0;u()=0;u(l)= a
and make null all the terms in'.
| Solve the cascade system which determines the

A. Letee (Laboratoire Navier)



~ Theasymplotic expansions for a laminated plate  Example
Resolution

The cascade system is:

Termin © : u%qx)=0; u@)=0; uw@)=a
Termin 1 @ ul®qx) = u°;
Termin |

ul(0)=0; ut(@)=0
'Lii.EJO(X): gL

; u'(0)=0;
The solution is obtained by mathematical induction:

u(1)=0
x3 X x> x  x% x
u’(x) = ax; ut(x) = a T u?(x) = a 5 TR

A. Letee (Laboratoire Navier)



~ Theasymplotic expansions for a laminated plate ~Scaling of the 3D problem
Contents

The 3D Problem
I The asymptotic expansions for a laminated plate
Example
I Scaling of the 3D problem
The expansion
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The Bending-Gradient plate model
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Change of variables

ern

» X3

[ e,z |+
B - | 1
e, % e, Yz
It |
e, x = @! e Y 2F3 @
t v - 1 = 1 2
2F3
t 2

Iy = XT for the in-plane variablesy 2!

| z= ? for the out-of-plane variablez 2]  3; 3

t .
=1 is the small parameter

The fourth-order elasticity tensor can be rewritten as:

C'(xs)=C t x3 =C(2)

=] F = = £ DA

A. Letee (Laboratoire Navier)



- Theasymplotic expansions for a laminated plate ~Scaling of the 30 proplem
Non-dimensional elds

We de ne the non-dimensional eldsu;"; ) as follows:

8
< U (xpx2;x3) = Lu (x=L;xo=L;xz=t)= Lu (Y1;Y2;2)
"t (Xq; X2 X3) = " (=L xo=L; xa=t) = " (Y1;Y2;2)
b (X5 X5 X3) = (x1=L; x2=L; x3=t) = (Y1;Y2;2)

The derivation rule for these elds is:

- d.d. d
dx; " dxo’ dxg
@ @ @
=L' ——0 +t! 00~ =L +t?h
@, @- @ oY Tz
_ 1
=L L (v
where
o — + 1
I;(Y;z) - r*v —I;z

DQC
A Letee (Laboratoire Navier) (NN s



. Theasympioic expansions for a laminated plate | Scaling of the 30 problem
Natural scaling of the stress
g t; + 33~ 0
2

t —_
3 * 333=0

8 z,,
E t 3 = , t; du
t=
) 4
o 122)= S T
t 3( t=2) = O t=2 ’
' ° ) ‘s 0% 5% % oand fz ?
The out-of-plane loading is scaled as:
f(x1;%2) =

2F3(Y1,Y2)
2

A. Letee (Laboratoire Navier)
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. Theasympioic expansions for a laminated plate | Scaling of the 30 problem
The non-dimensional 3D problem

The set of statically compatible elds can be rewritten as:
8

1 1
2 r =0on = ! ] Z;+2;
— Y; 1 1
SC'D : (Y32) , 2 2
>
: e, = EF3§3 on!
The kinematically compatible elds becomes:
[ R— S .
< U Ty, 0N
KC® : 1 1
= n@! it =
u=0 on@!] Zi+zl
The constitutive law becomes:

(Y1;Y2;2) = C (2) : " (Y1, Y2;2)

1

A. Letee (Laboratoire Navier)



. Theasympioic expansions for a laminated plate | Scaling of the 30 problem
Properties of the non-dimensional solution

For given !; C;Fs3; whereC is monoclinic and even im, and under

some regularity conditions, the solution of the non-dimensional problem
unique.

Obviously, due the change of variables! z:
I uz and 3 are even iz
I u, and 33 are odd inz

We have the following new properties:
I uzand 3 are odd in
I u, and 33 are even in

u]
L)
I
ul
it
)

)

A Lelee (Laboratore Navie) D SRS



SRR 5coig of the 30 prolem
Proof
New change of variable®=

%3 for the out-of-plane variable. The new
non-dimensional elds®"% 9 are de ned by:
< U (XuXeiXs) = Lu® (xq=Lixe=L; xs=t)= Lu® (Y1;Y2,29
"Co(arxeixa) = "0 (aEhixe=l; xat) = "0 (Y3229
C(Xes Xes Xa) = O (xa=L;x=L; xa=t) = O (Y1;Y2 29
The new derivation rule for these elds is:
L. d.d.d
- dx;’ dxo’ dxg
@ @ 1 @ 1 1
=L! = =0 troo—= =L t
@, @> @° Y 20
1
L r—(Y;Z")
where

_ 1
Loy T B
A. Lelee (Laboratoire Navier)
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u]
L)
I
ul
it
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. Theasympioic expansions for a laminated plate | Scaling of the 30 problem
The new equations

1 1
u— a— I " _I
r_(Y;ZO) 0 on o] 2,+2[,
> 2
e, 2F3g3 on!
8
< uO= UO S
KC®D°

=c 20
A. Letee (Laboratoire Navier)



E ect of the transformation ! on the
non-dimensional solution

The new non-dimensional eldsu®"® 9 are solutions of the same
equations as fory;"; ) whereFs! Fz and !

WSS 9 Yuvz2® =(us )ERE ) vy 2°

Moreover, by de nition, the new non-dimensional elds coincide with the
initial ones withz =z

WS"% 9 Yi Y22 = (u;t )P v Yy; 2°
Hence, we have:
U ) (YuYz) = (s )OO (YnYz 2)

Even components iz are odd in and odd components iz are even in .

A Lelee (Laboratore Navie) D S



~ Theasympiofic expansions for a laminated plate  The expansion
Contents
The 3D Problem
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I The expansion
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e mpie S et R lamneiedpiaiey The oxpansion
Expansion
We assume

8
" Ouno + 1n1 +
- 0 o 4 11 4
uk;"Pand P, p= 1,0;1;2::, are functions of 1; Y2; 2)
Because:
I uzand 3 are oddin
I u, and 33 are even in
we have:
I u and "5 are null for everp and even inz for odd p.
u, P oand 54
A. Letee (Laboratoire Navier)

are null for oddp and odd inz for evenp.
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~ Theasympiofic expansions for a laminated plate  The expansion
Statics

The normalized 3D equilibrium equation becomes:

- 1 0 0 0 1 —N-
= + + + =
r (Y;2) r*z LY I;z 0:
Hence,
®r =0and " r_+ " r =0;p O
z Y z
Or in components:
0 — p p+tl — - .
izz=0 and P + [35=0;p O

A. Letee (Laboratoire Navier)



p

€3

~ Theasympoicexpansions for alaminated plate | The expansion
Statics
The static boundary conditions oh  writes:

=0 when p62 and
Or in components:

2

|D
w
1

P
i3

NPy

Y1;Y2; = =0 when pé62
%3 Y1 Yo > =0 and %3 Yi1;Yy

A. Letee (Laboratoire Navier)
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~ Theasympoicexpansions for alaminated plate | The expansion
Kinematics
The non-dimensional displacement eld is:

u= 1!

u 1y Ouo+ lu +
The non-dimensional strain eld is:

S — 2u 2 In 1 Ouo
=u r—(Y;z) = + + +
with:
no2 - g 1 Sri and np — gp+:|_ Sri + up Sri ; p 1
z z Y
In components:
IIZ_O. ||2_1'u1 and u2_ul
-V 37 543 33 = Y33
and for allp 1:
1
np —_ p p np
= — u’ + U ;
2 ) f

A. Letee (Laboratoire Navier)

and "%

—- p+l
33 = U33

o 9 = E z 9ac
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~ Theasymplotic expansions for a laminated plate  The expansion
Kinematics

The kinematic condition on the lateral boundary leads to:
8p 1 and 8(Y1;Y2) 2 @

u”(Y1;Y2)=0:

A. Letee (Laboratoire Navier)
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R | ov=' orcer displacements
Lower order displacements
We set" 2 =0 which leads to:

no2 . no2 _
=0; 2=

NI =

1 — w2 1 —

u.3=0 and "33=1U33=0
Hence,u ' is a function of {Y1;Y2).
Moreover,u ! is null since

1 is odd:

0 0
u't=U;"(Yy;Y2)e, = @ o A
1

1

Us
with the boundary conditions:

U31=0 8(Y1;Y2) 2 @!

A. Letee (Laboratoire Navier)



Lower order displacements

We set" ! =0 which leads to:

1
=5 Ut Hut =07 "= Wigt Uyt =0; "= U3 =0
Hence,u® has the following form
0 1
zUs.i
W= zUtr =@ zu ) A
0

with the boundary conditions:

U3;1n =0 8(Y1;Y2) 2 @!
wheren is the outer normal to@'.

=] (=)
A. Letee (Laboratoire Navier)
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Zeroth-order auxiliary problem

Equilibrium equation of order -1, compatibility equation, boundary
conditions and constitutive equations of order O lead to (o2 [ %; %]):

8 =
% 0 r,Z:O: % I33

0 — . uo. ukl kI

=C(2):"" e K
= zK

E e Sr_Z+ u’ sr—Y: g 1,1 0

0 = 1 o = = sut 5 and "33= Uzg

- 2 =3 = — 1 =0
|3 zZ= 3 =

The lowest-order curvature is:

1 .= 1 1 .- 1
K*= Uy, r o K="= U

DQC
A Letee (Laboratoire Navier) (NN



Resolution

From
23=0 and {5 z=

we obtain plane-stress:

i3=0
The constitutive equation writes:
2 3 2
11 Cu11 Ci22 Cr112 O
22 Ci22 Co222 C2212 O
1227 _8 Cuiz Coi2 Cr212 O
0 0 0 0 Cazs
0 0 0 0 Cuss
0 Ci133 Co2233 Cip331 O

1
— = 0
2
32
C1i3s ZKll
C2233 ZK,,
C 1233 2zK
C 1323 "0,
C 2323 o" g3
C 3333 "2
- = = = = 9AQ

A Lelee (Laboratore Navie) D ST



.~ TheKichho-Love plate model  Auiary Problem
Resolution

The strain is given by:

zC
"0 = zK Y(Y1;Y2); "°3=0 and "33= 3

(2,
= K (Y)Y
33 Caaza (2) (Y1,Y2)
The stress is given by:

°=sX(2): K *(Y1;Y2) orincomponents §=sf K '
where the fourth-order stress localization tensor is:

SK

(z2)=2C (z2) and s =0
and

C

=C C 33Css
denotes the plane-stress elasticity tensor.

A. Letee (Laboratoire Navier)
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. TheKichho-lovepltemodel | Audiary Prodlem
Resolution
By integrating of

.3 and
We nd:

u'=uf:K '+ U, =@

uf K '+ U}
where the displacement localization tensg)f‘ (2) related to the curvature
is given by:

n Z Z C #

u§ ()= r=>

dr and uk =
1 Caass
A. Letee (Laboratoire Navier)

=0
where [] denotes the averaged-out distribution: ][ :=



. TheKichho-lovepltemodel | Audiary Prodlem
Isotropic materials

The leading order strain:

"0 =zK Y "°53=0 and "§3=

= zZK *
33 1
The leading order stress is derived through :
2 3 2 ¢ & 32 3
11 A 0 ZKyy
4 ¢ 5=§ 15 g £a 2K, 5
2 SYM 50 ) 2zK,,
The displacement corrector is:
0 1
0

=] (=)
A. Letee (Laboratoire Navier)
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T e KircthosLove plate model [ Macroscopic problem
Determination ofUs*
Resultants

The zeroth-order bending moment is de ned as

MO (Y]_;Yz) = Z 0
The rst-order shear force is:

Q' (Y1;Y2):=h3i

A. Letee (Laboratoire Navier)



© | Thekichho-Love platemodel | Mecoscopic problem
Determination ofUs*

Equilibrium

Recall that:

i03;3 =0 and

o+ fme=0ip O
The bending equilibrium equations are:
z 0. + 13;3 - 0 - MO; Ql
The out-of-plane equilibrium equation is:
:1%; + %3;3 =0= Ql + F3
Finally, we have:
M°.

+ F3=0
A. Letee (Laboratoire Navier)



© | Thekichho-Love platemodel | Mecoscopic problem
Determination ofUs*

Constitutive equation

From

D E D

E D
z° zsK (@)K * =

E
= 7?C (2):K *!
we obtain the Kirchho 's constitutive equation:

D
M°=D:K ' where: D =

E
The Kirchho -Love plate equations are:

z°C
8

%MO: r r
Y Y

M°=D:K %

on !
gK 1= U31r
- U

" r ; on !
Y Y

+F3=0; on !

,'=0 and

A. Letee (Laboratoire Navier)



© | Thekichho-Love platemodel | Mecoscopic problem
Summary of the Kirchho -Love model
The displacement is approximated by:

., 1
zU,
lu 1+Q0:@

<

1u3' 1
The strain" is approximated by ° 6 u«
LLX0]

St (v 12) with:
C
=zK *(Y1;Y2); "°3=0 and "33= £33 (Z)K t(Y1;Y2)
C3333(2)
where
The stress is approximated by ° such that
° =2zC

" (v2) 6 0 and
(2)K * and ?
A. Letee (Laboratoire Navier)
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N Vocosopc problem
Lateral boundary conditions

It should be emphasized that the assumed expansion is hot compatible
with clamped lateral boundary conditions. Indeed,

0 0 1
g1=gK:K1+U§g3=@ 0 A 60:
uf K '+ U}

A. Letee (Laboratoire Navier)
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~ TheBending-Gradentplate model Sheareects
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First-order auxiliary problem

Equilibrium equation for order 0, compatibility equation, boundary
conditions and constitutive equations of order 1 lead to (o2 [ 3; 3]):

8 1
o i +* i33=0
0 1 — n
% r v + l;z =0 ij CIjkl ki
1 — TN nl — 1 -
=C(2): Ue,
wli_ 12 S 1 s w1 — 1 2 1
3 u* Sr+ut Sr 3= 3 U5+ U}
. 1 = 1 = nl 2
z 2 70 33= U33=0
. 1 — 1 -
i3 £= 3 =0
=] 5 = = = Q>

A Lelee (Laboratore Navie) D SO



L Thelending Gredient plaie medel | sheareecs
Resolution
Transverse stress
From

.+ 1g3=0
°©° = s @K' =z (@K'
3 ' ;
' 13 Z= % =0
we obtain the rst-order transverse shear stress:
Z V4
1 —
3= er
2

A. Letee (Laboratoire Navier)



~ TheBendngGradientplae model Sheareects
Resolution

In-plane stress

From"* =0 and "43=0 and the constitutive equation:

2 3 2 32 3
11 Cuan Cu22 Cayzz O 0 Cuss 0
32 Co22 C212 O 0 Cooss 0
127 - Criz O 0  Cuzss 0
i3 Ciz1z Ciz23 O 2'13
53 SYM Coz23 0 2'%
0 Caass3 0

we have ! =0 and the rst-order stress localization writes as:

=K ()f Kt
where we de ned the fth-order localization tensor as:
z
s =0; s{ (2)= rC dr and s =0
%
o = = = ) 8
A. Letee (Laboratoire Navier) | The Bending-Gradient theory =~ 20-26 July 2015  42/85 |



Resolution

Displacement

We nd that the second-order displacement eld writes as:
0 1
zUL, + ufr K !
2 _ Kr 1 1 — 1 Kr A
uv=u (2 Kt oz @ zUL, + 32 K.

where the displacement localization tensor related to the curvature
gradient writes as:

z, z !
Kr

y
u (2) = 4S 3 3 vC

and

A. Letee (Laboratoire Navier)



.~ TheBendng.Gradientplate model Higher oders?
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Periodic plates
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. TheBendngGradentpltemodel Higherorers?
The general form of the expansion
It can be formally shown that we have:

_ Us K . 2., Kr
u= —e, zU3 rfy+ ut K+ 9_ K rfy+..
where
X .
Uz := p+l Ug = hugi and K := Ujsr
p= 1
We have also for the stress:

r
Y Y
=sK:K+ sKTiK r +:::

Y
A. Letee (Laboratoire Navier)



. TheBendngGradentpltemodel Higherorers?
A higher order plate model from asymptotic expansions

Including shear e ects...:
[

... from asymptotic expansion?:
U3 2 C8(1)
[

Us 2 C4(1)
|

... from the approach from Smyshlyaev and Cherednichenko (2000)
... with the Bending-Gradient theory:
Us 2 CY(1)

A. Letee (Laboratoire Navier)



. TheBending-Gradient plate model Derivation of the Bending-Gradient theory
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o < =
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. TheBending:Gradient plate model Derivation of the Bending-Gradient theory
Stress localization as function of static variables

The stress eld can be accurately approximated by:
Be=sK: + sKi
— Y
=(

) (Y1;Y2) is an unknown symmetric second-order tensor eld

Choice of ?: The minimum of complementary energy!
The corresponding bending moment is:

D E
MBC =D where D = Z2C and d=D 1
Its gradient is:
R = MBC r, oo R

— MBG
A. Lelee (Laboratoire Navier)
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. TheBending:Gradient plate model Derivation of the Bending-Gradient theory
Stress localization as function of static variables

It is possible to rewrite B¢ in terms ofM B® and R:
Be=sN: d:MB® + KT d:MBC 1
and

BG= gM:MBC+ sRiR

where the localizations tensors are given by:

sM=sgsK:d; sR=3sK":d

A. Letee (Laboratoire Navier)



The Bending-Gradient stress energy

Plugging BC into the complementary energy of the full 3D problem lead
to the following functional:
Z
P MPSR = wt MPC + 2w R d
i ! i

where the stress elastic energies are de ned as:

>

1 1.
w Kb M BG =§M'3G:d:MBG and w B R =§TR5
with: D E
h= 'sR:s:sR

This sixth-order tensor is the compliance related to the transverse shear
the plate. It is positive, symmetric, but not de nite in the general case.

‘R

A Lelee (Laboatore Navie) D S E



. TheBendngGradientplate model ~Derivaion of the Bending Gradient theory
Extended plate equilibrium equations
Exact plate equilibrium equations

The total bending moment and the total shear force are de ned as
M

(YpY2)=t i; and Q (YiY2)= ‘thgai:
Moment equilibrium equations:
z + 1 o33 =M. Q =0 or M r_ Q=0
The out-of-plane equilibrium equation:
Vog, + gz =0Q

+F3=0 or Q r7Y+F3

A. Letee (Laboratoire Navier)



Extended plate equilibrium equations

Link between shear forces and generalized shear forces

Q=M r_ isnow replaced bR = M BG r,
We have the following relation:
iiR=MB® r =QB or R =MBC =QB¢

where

Mechanical meaning oR

0 =R Q1 = Rua1 + Riz2 = M1y + Magp
’ Q2 = Ri21+ Roo2 = Mog:1 + Moo

= = = E = vae
A. Letee (Laboratoire Navier)



- TheBendngGradientplate model Derivation of the Bending:Gradient theory
The Bending-Gradient statically compatible elds

The Bending-Gradient stress energy must be minimized over the set
(

— \ BG
ey R=M r

- or R =M‘3;G
i iR 1 =0 or R.

+ F=0

A. Letee (Laboratoire Navier)



- TheBendngGradientplate model Derivation of the Bending:Gradient theory
The Bending-Gradient constitutive equations

Now we de ne the generalized strains as:

KL BG
= % and ) = %
Note that the third-order tensor has the symmetry:

This leads to the following constitutive equations:
(

=d: MBS

or =
hiR

M BG
or

A. Letee (Laboratoire Navier)



- TheBendngGradientplate model Derivation of the Bending:Gradient theory
Dualization of equilibrium equations

Multiplying R

= MBC with and integrating by parts on the plate
domain! yield: '
Z Z
MBG . +R d = MB®  nd
! @!
Multiplying R -
plate domain! yield:

z

z
R USCd! =
!

+ F3 = 0 with US® and integrating by parts on the

4

R n USCdi+ FsUBCd!
@! !

A. Letee (Laboratoire Navier)



- TheBendngGradientplate model Derivation of the Bending:Gradient theory
Weak formulation

Addinzq these equations leads to the following expression:
MB® . +R

!

z

NI =

+ uge+  UEe

Z

FsUsCd! +  MPC
@!

d! =

n +R n UBCd

Therefore, we have obtained the weak formulation of this plate theory
Vine = Vég

where ~

ext

: ro +RE+i r UBG dl
— Y — — Y
z z
vES = RUBCd! + MBC: n o+ ii
! @!
andn is the in-plane unit vector outwardly normal t%.
A. Lelee (Laboratoire Navier)
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- TheBendingGradient plate model  Derhvation of the Bending Gradient theory
Kinematic compatibility conditions

We identify the igternal power obtained by dualization
W$=IM%:_LY+?§_HIa@Gm
with the one obtéined with %he constitutive equations
ViBG —

nt —

MBC: + 2R dI
! i
Finally, we de ne the set of kinematically compatible elds as

( = rfY
KCBC : B
2 = +ir Uge
— — Y
to which the following boundary conditions must be added for a clampe
plate:
us¢=0 and
A. Lelee (Laboratoire Navier)

n=0on @!
o = = = DA
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- TheBendngGradientplate model Derivation of the Bending:Gradient theory
Summary

The Bending-Gradient plate theory equations are the following:

8 .
§R=MBG r, and iR r_+F3=0 on !

=d:MB and =hiR on !
§ = r_ and 2 = +ir _US® on !

- Y - — Y
UB¢=0 and n=0on @!
Note that:
= KB®+ 2 where KB®= UfSr 1
— Y Y Y

Setting 2 = 0 in the Bending-Gradient model leads exactly to
Kirchho -Love plate model.

A Lelee (Laboatore Navie) S



3D localization

Once the exact solution of the macroscopic problem is derived, it is
possible to reconstruct the local displacement eld. We suggest the

following 3D displacement eld wher&)B¢, are the elds solution of the
plate problem: -

UBG

it is possible to check that:

n u BG nBG - 2 S
(Y;2)

A. Lelee (Laboratoire Navier)



. TheBending-Gradient plate model The Reissner-Mindiin theory for homogeneous plates
Contents
The 3D Problem

The asymptotic expansions for a laminated plate
The Kirchho -Love plate model

I The Bending-Gradient plate model
Shear e ects

Higher orders?

Derivation of the Bending-Gradient theory
I The Reissner-Mindlin theory for homogeneous plates

Distance between the BG and the RM models
Periodic plates

Applications of the Bending-Gradient theory to laminates

o < =

A. Lelee (Laboratoire Navier)



Homogeneous plates

In this case, we have:

8
E BG =12zi MEBC =12zMBC
B6= B¢ = 31 422i R = 31 422 QB¢
% =0
which is a function oM B¢ and QB¢ = i { R instead of the wholeR

A Lelee (Laboatore Navie) RS S



- TheBendngGradientplate model The ReissnerMindin theory for homogeneous plates
The constitutive equations

The Bending-Gradient part of the stress energy becomes:
1

wB R =

with:

= 2'RihiR =
2 -

1
EQBG hRM QBG
h=i h™ j
where the Reissner's shear forces sti ness is given by:
6
hfM = =s
5> 33
(it is equal to % with G the shear modulus for isotropic plates). The
Bending-Gradient constitutive equation becomes:
=hiR=i

with

= hRM QBG
A. Lelee (Laboratoire Navier)
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. TheBending-Gradient plate model The Reissner-Mindiin theory for homogeneous plates
The kinematics

Using the kinematic compatibility

2 = 4+ r_uBe

where' is the classical rotation vector of the Reissner theory. Therefore
the kinematic unknowns ar&§¢ and' , and we have:

( = '7 SriY = d:M BG
_ _ —vY x

N
1

A Lelee (Laboatore Navie) R SO



. TheBending-Gradient plate model The Reissner-Mindiin theory for homogeneous plates
Static

The following boundary conditions must be added for a clamped plate

US¢=0 and ' =0on @!
Finally, the balance equations are:
( MBC ¢

. QP¢=0on!

Q% r +Fs3=0on!

In conclusion: the Bending-Gradient theory completely coincides for
homogeneous plates with the Reissner-Mindlin model.

A. Lelee (Laboratoire Navier)
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SRRl ©'<t>rc= between the BG and the RM models
Distance between the BG and the RM models
We introduce the following relative distance:

w
RM/BG — kf K
khk
where q__
khk = Thiih
warping part ofh:

hW = h 4

is the norm for Bending-Gradient compliance tensors an{ is the pure
—i

gl Pihiii

Reissner-Mindlin one we have exacthfRMBCG = 0.
A. Lelee (Laboratoire Navier)

o 9 = E

RMBG gives an estimate of the pure warping fraction of the shear stre:
energy. When the plate constitutive equation is restricted to a



. TheBending-Gradient plate model Distance between the BG and the RM models
Distance between the BG and the RM models
X3

X2

[30; 30]s
RM/BG 0

16.0%

Stack | [0]
|

[0; 45;90;45]s

12.4%
Table: The criterion RMBG for several laminates

A. Letee (Laboratoire Navier)
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- Applications of the Bending-Gradient theory to laminates  Voigt Notations
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Voigt Notations

hi
We introduce the linear operator reallocating tensor components. For
instance, the bending moment and the curvature are reallocated in a
vector form:

0 1 0 1
h i Mi1 h i 11
M Z@pl\_ﬂzz A and Z@p_zz A
2M12 2 12
and the fourth-order compliance tensor is reallocated in a matrix form
0 p_
h i di111 d2211 2d1211

d =@ d2211 d2222 201007 A
2d12117  2d1222  2d1212
so that the constitutive equation

=d:M becomes =d M

The same forD andC .
A. Letee (Laboratoire Navier) | The Bending-Gradient theory =~ 20-26 July 2015  64/85



Voigt Notations

hi
The constitutive sixth-order tensoh is turned into the 6 6 matrix h :
0 - -

p_ p_
h111111 h']1117? 2h111171 h111?11 h'l']'l??? 2h111221
h221111  yh221122 2hp1121 phooio11 h221222 2h221221
2hi21111  2h121122 h121121 2h121211 2h121222 h121221
h112111 h112122 2112121 harzoma h112222 2h112221
h222111 h222122 2h222121  ph222211 N222222 2ho20021
2h1o0111  2hioo12o 2hio2121 2h120011  2h1o2002  2hioooo1

The third-order tensors and R are reallocated in a vector form:
0 1 0 1
111 Ri11
. 221 . Ro21 . . .
hi p 5 h i p 3R hi hi hi
= e R = 121 & and = h R
- 112 - Ri12 - = -
p 222 pRe22
2 122 2R122

A Lelee (Laboatore Navie) D SRS
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RN BRICOE O ISECNN CANCIIMICOMDNEMINAIESY Cyindical bending of laminates
Pagano's boundary value problefgyano, 1969)
=1= = 1

CFRP layers with di erent orientiationsf3(Y1) =

Fosin Y1 where

=, n2 N is the non-dimensional wavelength of the loadin

4 2F3=2

Y2

Y1
?Fa= < 11(2)=0
. 12(2)=0
1 us(z) =0

Invariant in xz-Direction, \periodic" in x;-Direction
) No boundary layer!

o = = = z 9ace
A Lelee (Laboatore Navie) D S



Resolution of the Bending-Gradient problem

All the non-dimensional elds are invariant i¥»-Direction

From = -, We obtain:
0 1 O 1 O 1
h i 11 1111 11
=@ 22 A=@ 221;1 A=-=@ 2;1A
p_ P
2 1 2 1211 31
The equilibrium equations write as:
0 1 O 1
Ri11 Mi1:1
. Ro21 M22:1
h i szlzl 2M121
R = ' and M11;11= F3(Y1)
- Ri12 0
pF_szz 0
2R]_22 O

o = = = 3

A. Lelee (Laboratoire Navier)



~ Applications of the Bending-Gradient theory (0 laminates | Cylindrical bending of laminates
Shear constitutive equation

Taking into accountRi12 = Ro22 = Ri22 =0, Usz2 =0, shear constitutive
equation is rewritten in two parts.
A rst part with unknowns involving active boundary conditions:

0 1 0 1 O 1 0 1
1 hi1 hip his Mi1:1 Us:1

@ ,A=72@hp hy hphA @ pMaz1 A @ o A
3 hiz hxs hss 2M12:1 0

and a.psgcond part which enables the derivation of= 112, 5= 229,
6= 2 122 on which no boundary condition applies:

0] 1 0] 1 O 1 0 1
4 har hao has Mi11:1 0

@ ;A= ?@hs hsy hsz A @pl\_/lzz;l A @ 0, A
6 he1 he2 hes 2M 121 Us1= 2

A Lelee (Laboatore Navie) R S



~ Applications of the Bending-Gradient theory (0 laminates | Cylindrical bending of laminates
Final System

Finally, combining the above equations leads to the following set of
equations which fully determines the problem:

8 M11;11= FoSin Y1
%hi h i

_ 0
i h i
d M

1
Us.11
h M =@ o A
111 0
h i
% M =0 for Y{=0 and Y;=1
" U3=0 for Y1=0 and Y;=1
h i
where for conveniencdy is the 3 3 submatrix of h :
0 1
hit hiz his
h=@hy hy hg A

A. Lelee (Laboratoire Navier)
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_ Applications of the Bending-Gradient theory to laminates | ~Cylindrical bending of laminates
Solution

This di erential system is well-posed and the solution is unique. Its is of
the form:
h i h i
M = M sin Y1 and Usz= Uzsin Y;
h i
where M

and U; are constants explicitly known in terms of the
problem inputs.

A. Letee (Laboratoire Navier)
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- Applications of the Bending-Gradient theory (0 laminates.  Numerical lustrations
Convergence for a [30 30 ;30 ] stack

(

) rate: KL

t and BG t?
( U3) rate: KL

A. Letee (Laboratoire Navier)

t2 and BG

t2
=} =2 = E = DA
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R ©+iorsion o periodicplates
Assumptions

I The same 3D problem as for laminates b@t' x
depends now on the three coordinates.

I C' x is periodic in the two rst coordinatesxi;xz).

I The in-plane dimension of the unit cell is comparable to
its thicknesst.

It is small with respect to the in-plane dimension of the

plate L.
8
1 =0 on .
% t'x =C''x :""x on .
t - |Lo.
e, f3g3 on!'t :
"t=u" °r on "

u=0 on@!" ] t=2;t=2[

A Lelee (Laboratore Navie) D S



Extension to periodic plates

I Bending auxiliary problem (Caillerie, 1984)

8
K'r =0

K=C y

K _ yaK + 1 s yPer

K e, = 0 on free faces@,
K'n skew-periodic on lateral edg@Y,
uP®(y) (y1;y2)-periodic on lateral edgegY|

PK

I gives:
LocalizationuX X related to the curvatureK

Bending sti ness:D

=} =2 = C
A Letee (Laboratoire Naviey MMM



R ©+iorsion o periodicplates
Extension to periodic plates

Bending auxiliary problem (Caillerie, 1984)
[

Shear auxiliary problem

r =0
Y
% R_Cy: M

ot ut o
Y y
% R e, =0 on free faces@,

n skew-periodic on lateral edg@Y),

uR(y) (y1;y2)-periodic on lateral edged,
!

gives:

Localizationu® and R related toR
Shear compliance tensoh

A. Letee (Laboratoire Navier)



.~ Pericdicplaies Thecaseof celliar sandwich panels
Contents

The 3D Problem
The asymptotic expansions for a laminated plate
The Kirchho -Love plate model
The Bending-Gradient plate model
Applications of the Bending-Gradient theory to laminates
I Periodic plates
Extension to periodic plates
I The case of cellular sandwich panels
Why all plates are not \Reissner" like?
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R T case of celer sandwich parels
Justi cation of the Sandwich Theory
I Divide in 3 layers

(homogeneous skins and heterogeneous core)
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Justi cation of the Sandwich Theory

I Divide in 3 layers
(homogeneous skins and heterogeneous core)
I Bending auxiliary problem
I Contrast assumption t; ts:
I ts=t; Contrast ratio
) Skins under traction/compression
) Core not involved in Bending sti ness

A. Letee (Laboratoire Navier)



R T case of celer sandwich parels
Justi cation of the Sandwich Theory
|

Divide in 3 layers
|

Bending auxiliary problem
[

(homogeneous skins and heterogeneous core)
Shear auxiliary problem
I f_R

becomed (%) + Direct homogenization scheme
The BG is degenerated into RM model

1 £ con rms the classical intuition

Lekee and Sab (2012a)

A. Letee (Laboratoire Navier)



R T case of celer sandwich parels
Application to the chevron pattern
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R T case of celer sandwich parels
Application to the chevron pattern

Bending:

A. Letee (Laboratoire Navier)



R T case of celer sandwich parels
Application to the chevron pattern
Shear forces
localization (Q)
I Overall shearing

of the core
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R T case of celer sandwich parels
Application to the chevron pattern
Shear forces
localization (Q)
I Overall shearing

of the core
I QOut-of-plane

skins distorsion
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R T case of celer sandwich parels
Application to the chevron pattern

Shear forces
localization (@)

I Overall shearing
of the core

I QOut-of-plane
skins distorsion

I Critically
in uence shear
force sti ness

Lekee and Sab (2012b)

A Lelee (Laboratore Navie) D SRS



. [Percdcplaies Whyalplaes are not \Reissner' ike?
Contents

The 3D Problem
The asymptotic expansions for a laminated plate
The Kirchho -Love plate model
The Bending-Gradient plate model
Applications of the Bending-Gradient theory to laminates
I Periodic plates
Extension to periodic plates
The case of cellular sandwich panels
I Why all plates are not \Reissner" like?
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Homogenizing an orthogonal beam lattice

Thick-plate model(macro)

+ 2 St-Venant Beamsmicro)
e, Q! Localization b
e
-2
I gl p3§3 2 b
gz
=1

A. Letee (Laboratoire Navier)



. [Percdcplaies Whyalplaes are not \Reissner' ike?
Field localization
Bending moment r(M): mM) -
bM22  bMy2
2
€2 bM11
&

Apply M "on average" on the unit-cell (cailierie, 1984)
bM12

1 M) = 2,M) = g

1
bM12
1m(M) = bM11 A
0

A. Letee (Laboratoire Navier)



. [Percdcplaies Whyalplaes are not \Reissner' ike?
Field localization

Bending moment r(M): mM) -

bM22  bM12 Apply M "on average" on the unit-cell cailerie, 1984)
2 . .
& " Bending gradient r (R); m(R)
-1 1 bM1, AssumeM = R X (Lekee and Sab, 2013a)
0 0 1 0 1
0 bRiz1 s 5
1.(R) — 1 R) —
c %9 L()_%belllf'zRHZ; § m()'%br\’lzz s 5 §
W auk 0 0 1
bQ2 '

1
bRiods D) 0

0 0 X
e, - k . % 0 § . % bRiz2 s 3 §
bQs 268 3) = belzl E’Z Rzzz? m™ = bRiz1 s 5
Q2 2 0

A Lelee (Laboratore Navie) D SRS



. [Percdcplaies Whyalplaes are not \Reissner' ike?
Field localization

Bending moment r(M): mM) -

bM22  bM1, Apply M "on average" on the unit-cell(cailerie, 1984)
2 - .
€, " Bending gradient r (R); m(R)
-1 1 bM1o AssumeM =R X  (Lelee and Sab, 2013a)
Reissner-Mindlin r (?); m(Q) :
c 9 Assume cylindrical bendin@whitney, 1969; Cecchi and Sab, 2007)
‘0?\\} ‘0?‘&7,&5
e bQ2 Q1= Ru1; Q2= Raze; Riz1= Rizz2= Roa1 = Rii2 =0
2 0 1 0 1
bRizds 9 0 0
e, X g b L@-@ 0 A and Im@=@0 A
2
Q1 bQ1 1 0 1
0 1 0 1
0 0
Z@=-@ o A and 2m@ =@ 0 A
bQz o,
o 5 =, «=» T 9ac

A Lelee (Laboratore Navie) S S



R v o plates are not \Reissner fke?
Application: lattice rotated 45and cylindrical bending

Exact solution
|

Plate solution + Localization
(RM and BG)

A. Letee (Laboratoire Navier)



R v o plates are not \Reissner fke?
Application: lattice rotated 45and cylindrical bending

m2

m
o

o i

s
2

Exact
BG

S
)

RM=KL

Nromalized Bending Moment
S S5 o
ol » w

o
)

0 05 1 15 2 25 3
Normalized coordinate S

35 4

A. Letee (Laboratoire Navier)

Normalized Torsion

-0.05

gle 01

-0.15
-0.2
-0.2
-0.3

-0.35
-0.4

-0.45

I Exact solution

I Plate solution + Localization
(RM and BG)

Exact
BG

RM=KL

0 0.5 1 15 2 25 3 35 4
Normalized coordinate S

] [ =
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