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The open question of shear forces in heterogeneous plates

I Thick or Thin plates?

I Thin Plate { Kirchho�-Love { ' � = U3;� :
asymptotic derivation, transverse shear e�ects neglected
(Kirchho� (1850); Love (1888); Ciarlet and Destuynder (1979))

I Thick Plate { Reissner-Mindlin {' � 6= U3;� :
axiomatic and controversial. Natural boundary conditions!
(Reissner (1944); Hencky (1947); Mindlin (1951))

: : : plates are generalized continua!

I Deriving formally Reissner-Mindlin plate model from asymptotic
expansions?

) The Bending-Gradient plate model
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The 3D Problem
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The 3D Problem

The 3D problem con�guration

C��
t (x3): even


 t
f
-

f
-

! L+

! L ! L�

@!L

e
-3

e
-2

e
-1

t

L
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The 3D Problem

The 3D problem equations

8
>>>>>><

>>>>>>:

� t
ij ;j = 0 on 
 t :

� t
ij = C t

ijkl (x3)" t
kl on 
 t :

� t
i 3 = � fi on ! L� :

" t
ij = ut

(i ;j ) on 
 t :

ut
i = 0 on @!L� ] � t =2; t =2[

I monoclinic and evenC��
t :

C t
�� 3 = C t

333� = 0,
�; �; ; ::: = 1 ; 2.

I symmetrically laminated plate
I symmetric transverse load

f
-

= f3e
-3

8
>>>>>>>><

>>>>>>>>:

��
t � r
-

= 0 on 
 t :

��
t
�
x
-

�
= C��

t (x3) : "�
t
�
x
-

�
on 
 t :

��
t �

�
� e
-3

�
= f
-

on ! L� :

"�
t = u

-

t



sr
-

on 
 t :

u
-

t = 0 on @!L� ] � t =2; t =2[

) pure bending:
I u t

3 and � t
� 3 even / x3

I u t
� , � t

�� and � t
33 odd / x3
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The 3D Problem

Proof of skew symmetry

Let u
-

t 0
be the image ofu

-

t by the symmetry with respect to the
(x1; x2)-plane

u
-

t 0
(x1; x2; x3) =

0

@
+ ut

1(x1; x2; � x3)
+ ut

2(x1; x2; � x3)
� ut

3(x1; x2; � x3)

1

A

Obviously,u
-

t 0
= 0 on @!L� ] � t =2; t =2[. Its corresponding strain

"�
t 0

= u
-

t 0

 sr
-

is:

"�
t 0
(x1; x2; x3) =

0

@
" t

11 " t
12 � " t

13
" t

12 " t
22 � " t

23
� " t

13 � " t
23 " t

33

1

A (x1; x2; � x3)
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The 3D Problem

Proof of skew symmetry

Its corresponding stress��
t 0 �

x
-

�
= C��

t (x3) : "�
t 0 �

x
-

�
is:

2

6
6
6
6
6
6
4

� t 0

11
� t 0

22
� t 0

12
� t 0

13
� t 0

23
� t 0

33

3

7
7
7
7
7
7
5

=

2

6
6
6
6
6
6
4

C t
1111 C t

1122 C t
1112 0 0 C t

1133
C t

2222 C t
2212 0 0 C t

2233
C t

1212 0 0 C t
1233

C t
1313 C t

1323 0
SYM C t

2323 0
C t

3333

3

7
7
7
7
7
7
5

2

6
6
6
6
6
6
4

" t 0

11
" t 0

22
2" t 0

12
2" t 0

13
2" t 0

23
" t 0

33

3

7
7
7
7
7
7
5

BecauseC��
t (x3) is even and monoclinic, then:

��
t 0
(x1; x2; x3) =

0

@
� t

11 � t
12 � � t

13
� t

12 � t
22 � � t

23
� � t

13 � � t
23 � t

33

1

A (x1; x2; � x3)
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The 3D Problem

Proof of skew symmetry

Finally, the balance equation��
t 0

� r
-

= 0 is easy to check and we have:

��
t �

�
� e
-3

�
= � f

-
= � f3e

-3
on ! L� :

Therefore,

u
-

t 0 �
x
-

�
= � u

-

t
�
x
-

�
; "�

t 0 �
x
-

�
= � "�

t
�
x
-

�
; ��

t 0 �
x
-

�
= � ��

t
�
x
-

�

Hence, 0

@
+ ut

1(x1; x2; � x3)
+ ut

2(x1; x2; � x3)
� ut

3(x1; x2; � x3)

1

A =

0

@
� ut

1(x1; x2; x3)
� ut

2(x1; x2; x3)
� ut

3(x1; x2; x3)

1

A :::
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The 3D Problem

Variational formulation

The set of statically compatible stress �elds is:

SC3D;t :

8
<

:

��
t � r

-
= 0 on 
 t

��
t �

�
� e
-3

�
= f
-

on ! L� ;

The set of kinematically compatible displacement �elds is:

KC3D;t :

(
"�

t = u
-

t 
 sr
-

on 
 t

u
-

t = 0 on @!L� ] � t =2; t =2[

The strain and stress energy densityw3D and w � 3D are respectively given
by:

w3D
�

"�

�
=

1
2

"� : C��
t : "� ; w � 3D

�
��

�
=

1
2

�� : S��
t : ��

with:
S��

t =
�

C��
t
� � 1
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The 3D Problem

Potential energy

P3D
�

"�
t
�

= min
"� 2 KC 3D;t

n
P3D

�
"�

�o

The potential energyP3D is given by:

P3D
�

"�

�
=

Z


 t
w3D

�
"�

�
d
 t �

Z

! L
f3

�
u+

3 + u�
3

�
d! L

u
-

� = u
-

(x1; x2; � t =2) are the 3D displacement �elds on the upper and
lower faces of the plate.
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The 3D Problem

Complementary energy

P � 3D
�

��
t
�

= min
�� 2 SC3D;t

n
P� 3D

�
��

�o

The complementary potential energyP� 3D given by:

P � 3D
�

��

�
=

Z


 t
w � 3D

�
��

�
d
 t

At the solution (Clapeyron's formula):

P3D
�

"�
t
�

+ P � 3D
�

��
t
�

= 0
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The 3D Problem

Building a plate model?

For typical widthL and thicknesst , let t
L ! 0

I Solve a 2D problem, called the \plate problem"
I \fair" 3D displacement localization
I \fair" 3D stress localization

Exercice: Trial from plate equilibrium equations...
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The asymptotic expansions for a laminated plate
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The asymptotic expansions for a laminated plate Example
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The asymptotic expansions for a laminated plate Example

Di�erential system depending on a small parameter

We want to solve the following di�erential equation on [0; 1]:

u00(x) � � u (x) = 0 ; u (0) = 0 ; u (1) = a

where� > 0 is a small parameter.

The solution is trivial:

u� (x) = a
sinh

� p
� x

�

sinh
� p

�
�

The limit of u� (x) as � goes to 0+ is:

lim
� ! 0+

u� (x) = ax:
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The asymptotic expansions for a laminated plate Example

Taylor's series

Using Taylor's series:

sinh
� p

� x
�

=

� p
� x

� 1

1!
+

� p
� x

� 3

3!
+ � � �

sinh
� p

�
�

=

� p
�
� 1

1!
+

� p
�
� 3

3!
+ � � �

We obtain:

u� (x) = ax + a� 1 x3 � x
3!

+ a� 2
�

x5 � x
5!

�
x3 � x

3!3!

�
+ � � �
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The asymptotic expansions for a laminated plate Example

The method

I Write u� (x) as a series:

u� (x) = u0 (x) + � 1u1 (x) + ::: � � � + � i ui (x) + � � �

whereui are unknown functions.

I Inject this series in the di�erential system

u00(x) � � u (x) = 0 ; u (0) = 0 ; u (1) = a

and make null all the terms in� i .

I Solve the cascade system which determines theui
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The asymptotic expansions for a laminated plate Example

Resolution

The cascade system is:

Term in � 0 : u000(x) = 0 ; u0 (0) = 0 ; u0 (1) = a

Term in � 1 : u100(x) = u0; u1 (0) = 0 ; u1 (1) = 0
::::

Term in � i : ui 00(x) = ui � 1; ui (0) = 0 ; ui (1) = 0

The solution is obtained by mathematical induction:

u0 (x) = ax; u1 (x) = a
x3 � x

3!
; u2 (x) = a

x5 � x
5!

� a
x3 � x

3!3!
; � � �
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The asymptotic expansions for a laminated plate Scaling of the 3D problem
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The asymptotic expansions for a laminated plate Scaling of the 3D problem

Change of variables


 t

f
-

+

f
-

�

! L+

! L ! L�

@!L

e
-3

, x3

e
-2

, x2

e
-1

, x1
t

L




�
2 F3

2

�
2 F3

2

! +

! ! �

@!

e
-3

, z

e
-2

, Y2

e
-1

, Y1
1

1

I Y� =
x�

L
for the in-plane variables,Y� 2 !

I z =
x3

t
for the out-of-plane variable,z 2] � 1

2 ; 1
2 [

I � =
t
L

is the small parameter

The fourth-order elasticity tensor can be rewritten as:

C��
t (x3) = C��

�
t � 1x3

�
= C�� (z)
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The asymptotic expansions for a laminated plate Scaling of the 3D problem

Non-dimensional �elds

We de�ne the non-dimensional �elds (u
-

; "� ; �� ) as follows:
8
<

:

u
-

t (x1; x2; x3) = L u
-

(x1=L; x2=L; x3=t ) = L u
-

(Y1; Y2; z)
"�

t (x1; x2; x3) = "� (x1=L; x2=L; x3=t ) = "� (Y1; Y2; z)
��

t (x1; x2; x3) = �� (x1=L; x2=L; x3=t ) = �� (Y1; Y2; z)

The derivation rule for these �elds is:

r
-

=
�

d
dx1

;
d

dx2
;

d
dx3

�

= L� 1
�

@
@Y1

;
@

@Y2
; 0

�
+ t � 1

�
0; 0;

@
@z

�
= L� 1r

- Y
+ t � 1r

- z

= L� 1r
-

�
(Y ;z)

where
r
-

�
(Y ;z)

..= r
- Y

+
1
�

r
- z
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The asymptotic expansions for a laminated plate Scaling of the 3D problem

Natural scaling of the stress

8
>>><

>>>:

� t
��;� + � t

� 3;3 = 0

� t
� 3;� + � t

33;3 = 0

� t
33(� t =2) = � f3

� t
� 3(� t =2) = 0

)

8
>>><

>>>:

� t
� 3 = �

Z x3

� t =2
� t

��;� du

� t
33 = �

Z x3

� t =2
� t

� 3;� du � f3

� t
�� � � 0 ) � t

� 3 � � 1; � t
33 � � 2 and f3 � � 2

The out-of-plane loading is scaled as:

f
-

(x1; x2) = � 2 F3 (Y1; Y2)
2

e
-3
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The asymptotic expansions for a laminated plate Scaling of the 3D problem

The non-dimensional 3D problem

The set of statically compatible �elds can be rewritten as:

SC3D :

8
><

>:

�� � r
-

�
(Y ;z)

= 0 on 
 = ! � ] �
1
2

; +
1
2

[;

�� �
�

� e
-3

�
=

� 2

2
F3e
-3

on ! �

The kinematically compatible �elds becomes:

KC3D :

8
<

:

"� = u
-


 sr
-

�
(Y ;z)

on 
 ;

u
-

= 0 on @!� ] �
1
2

; +
1
2

[

The constitutive law becomes:

�� (Y1; Y2; z) = C�� (z) : "� (Y1; Y2; z)

r
-

�
(Y ;z)

= r
- Y

+
1
�

r
- z
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The asymptotic expansions for a laminated plate Scaling of the 3D problem

Properties of the non-dimensional solution

For given
�

!; C�� ; F3; �

�
whereC�� is monoclinic and even inz, and under

some regularity conditions, the solution of the non-dimensional problem is
unique.

Obviously, due the change of variablesx3 ! z:
I u3 and � � 3 are even inz
I u� , � �� and � 33 are odd inz

We have the following new properties:
I u3 and � � 3 are odd in�

I u� , � �� and � 33 are even in�
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The asymptotic expansions for a laminated plate Scaling of the 3D problem

Proof

New change of variablez0 = � x3
t for the out-of-plane variable. The new

non-dimensional �elds (u
-

0; "�
0; ��

0) are de�ned by:
8
<

:

u
-

t (x1; x2; x3) = L u
-

0 (x1=L; x2=L; � x3=t ) = L u
-

0 (Y1; Y2; z0)
"�

t (x1; x2; x3) = "�
0 (x1=L; x2=L; � x3=t ) = "�

0 (Y1; Y2; z0)
��

t (x1; x2; x3) = ��
0 (x1=L; x2=L; � x3=t ) = ��

0 (Y1; Y2; z0)

The new derivation rule for these �elds is:

r
-

=
�

d
dx1

;
d

dx2
;

d
dx3

�

= L� 1
�

@
@Y1

;
@

@Y2
; 0

�
� t � 1

�
0; 0;

@
@z0

�
= L� 1r

- Y
� t � 1r

- z0

= L� 1r
-

� �
(Y ;z0)

where
r
-

� �
(Y ;z0)

= r
- Y

�
1
�

r
- z0
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The asymptotic expansions for a laminated plate Scaling of the 3D problem

The new equations

SC3D0
:

8
><

>:

��
0� r
-

� �
(Y ;z0)

= 0 on 
 = ! � ] �
1
2

; +
1
2

[;

��
0�

�
� e
-3

�
= �

� 2

2
F3e
-3

on ! �

KC3D0
:

8
<

:

"�
0 = u

-

0
 sr
-

� �
(Y ;z0)

on 
 ;

u
-

0 = 0 on @!� ] �
1
2

; +
1
2

[

��
0�

Y1; Y2; z0� = C��
�
z0� : "�

0�
Y1; Y2; z0�
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The asymptotic expansions for a laminated plate Scaling of the 3D problem

E�ect of the transformation� ! � � on the
non-dimensional solution

The new non-dimensional �elds (u
-

0; "�
0; ��

0) are solutions of the same
equations as for (u

-
; "� ; �� ) whereF3 ! � F3 and � ! � � :

(u
-

0; "�
0; ��

0)
�
Y1; Y2; z0� = ( u

-
; "� ; �� )(� F3;� � ) �

Y1; Y2; z0�

Moreover, by de�nition, the new non-dimensional �elds coincide with the
initial ones withz = � z0:

(u
-

0; "�
0; ��

0)
�
Y1; Y2; z0� = ( u

-
; "� ; �� )(F3;� ) �

Y1; Y2; � z0�

Hence, we have:

(u
-

; "� ; �� )(� � ) (Y1; Y2; z) = � (u
-

; "� ; �� )(� ) (Y1; Y2; � z)

Even components inz are odd in� and odd components inz are even in� .
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The asymptotic expansions for a laminated plate The expansion
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The asymptotic expansions for a laminated plate The expansion

Expansion

We assume
8
<

:

u
-

= � � 1u
-

� 1 + � 0u
-

0 + � 1u
-

1 + � � �
"� = � 0"�

0 + � 1"�
1 + � � �

�� = � 0��
0 + � 1��

1 + � � �

u
-

p; "�
p and ��

p, p = � 1; 0; 1; 2:::, are functions of (Y1; Y2; z)

Because:
I u3 and � � 3 are odd in�

I u� , � �� and � 33 are even in�

we have:
I up

3 and � p
� 3 are null for evenp and even inz for odd p.

I up
� , � p

�� and � p
33 are null for oddp and odd inz for evenp.
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The asymptotic expansions for a laminated plate The expansion

Statics

The normalized 3D equilibrium equation becomes:

�� � r
-

�
(Y ;z)

= � � 1
�

��
0 � r

- z

�
+ � 0

�
��

0 � r
-Y

+ ��
1 � r

- z

�
+ � � � = 0 :

Hence,
��

0 � r
- z

= 0 and ��
p � r

-Y
+ ��

p+1 � r
- z

= 0 ; p � 0:

Or in components:

� 0
i 3;3 = 0 and � p

i �;� + � p+1
i 3;3 = 0 ; p � 0:
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The asymptotic expansions for a laminated plate The expansion

Statics

The static boundary conditions on! � writes:

��
p �

�
� e
-3

�
= 0 when p 6= 2 and ��

2 �
�

� e
-3

�
=

F3

2
e
-3

:

Or in components:

� p
i 3

�
Y1; Y2; �

1
2

�
= 0 when p 6= 2

� 2
� 3

�
Y1; Y2; �

1
2

�
= 0 and � 2

33

�
Y1; Y2; �

1
2

�
= �

1
2

F3 (Y1; Y2)
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The asymptotic expansions for a laminated plate The expansion

Kinematics

The non-dimensional displacement �eld is:

u
-

= � � 1u
-

� 1 + � 0u
-

0 + � 1u
-

1 + � � �

The non-dimensional strain �eld is:

"� = u
-


 sr
-

�
(Y ;z)

= � � 2"�
� 2 + � � 1"�

� 1 + � 0"�
0 + � � �

with:

"�
� 2 = u

-

� 1 
 sr
- z

and "�
p = u

-

p+1 
 sr
- z

+ u
-

p 
 sr
-Y

; p � � 1

In components:

" � 2
�� = 0 ; " � 2

� 3 =
1
2

u� 1
�; 3 and " � 2

33 = u� 1
3;3

and for allp � � 1:

" p
�� =

1
2

�
up

�;� + up
�;�

�
; " p

� 3 =
1
2

�
up+1

�; 3 + up
3;�

�
and " p

33 = up+1
3;3
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The asymptotic expansions for a laminated plate The expansion

Kinematics

The kinematic condition on the lateral boundary leads to:

8p � � 1 and 8 (Y1; Y2) 2 @!; u
-

p (Y1; Y2) = 0 :

A. Leb�ee (Laboratoire Navier) The Bending-Gradient theory 20-26 July 2015 27 / 85



The Kirchho�-Love plate model

Contents

The 3D Problem
The asymptotic expansions for a laminated plate
The Kirchho�-Love plate model

Lower order displacements
Auxiliary Problem
Macroscopic problem

The Bending-Gradient plate model
Applications of the Bending-Gradient theory to laminates
Periodic plates

A. Leb�ee (Laboratoire Navier) The Bending-Gradient theory 20-26 July 2015 27 / 85



The Kirchho�-Love plate model Lower order displacements
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The Kirchho�-Love plate model Lower order displacements

Lower order displacements

We set"�
� 2 = 0 which leads to:

" � 2
�� = 0 ; " � 2

� 3 =
1
2

u� 1
�; 3 = 0 and " � 2

33 = u� 1
3;3 = 0

Hence,u
-

� 1 is a function of (Y1; Y2).
Moreover,u� 1

� is null since� = � 1 is odd:

u
-

� 1 = U � 1
3 (Y1; Y2) e

-3
=

0

@
0
0

U � 1
3

1

A

with the boundary conditions:

U � 1
3 = 0 8 (Y1; Y2) 2 @!
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The Kirchho�-Love plate model Lower order displacements

Lower order displacements

We set"�
� 1 = 0 which leads to:

" � 1
�� =

1
2

�
u� 1

�;� + u� 1
�;�

�
= 0 ; " � 1

� 3 =
1
2

�
u0

�; 3 + U � 1
3;�

�
= 0 ; " � 1

33 = u0
3;3 = 0

Hence,u
-

0 has the following form:

u
-

0 = � zU� 1
3 
 r

-Y
=

0

@
� zU� 1

3;1
� zU� 1

3;2
0

1

A

with the boundary conditions:

U � 1
3;� n� = 0 8 (Y1; Y2) 2 @!

wheren
-

is the outer normal to@!.
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The Kirchho�-Love plate model Auxiliary Problem
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The Kirchho�-Love plate model Auxiliary Problem

Zeroth-order auxiliary problem

Equilibrium equation of order -1, compatibility equation, boundary
conditions and constitutive equations of order 0 lead to (forz 2 [� 1

2 ; 1
2 ]):

8
>>>><

>>>>:

��
0 � r

- z
= 0 :

��
0 = C�� (z) : "�

0:

"�
0 = u

-

1 
 sr
- z

+ u
-

0 
 sr
-Y

:

��
0
�
z = � 1

2

�
� � e

-3
= 0

8
>>>>>><

>>>>>>:

� 0
i 3;3 = 0

� 0
ij = C ijkl " 0

kl

" 0
�� = zK � 1

��

" 0
� 3 = 1

2u1
�; 3 and " 0

33 = u1
3;3

� 0
i 3

�
z = � 1

2

�
= 0

The lowest-order curvature is:

K�
� 1 ..= � U � 1

3 r
- Y


 r
-Y

or K � 1
��

..= � U � 1
3;��
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The Kirchho�-Love plate model Auxiliary Problem

Resolution

From

� 0
i 3;3 = 0 and � 0

i 3

�
z = �

1
2

�
= 0

we obtain plane-stress:
� 0

i 3 = 0

The constitutive equation writes:

2

6
6
6
6
6
6
4

� 0
11

� 0
22

� 0
12
0
0
0

3

7
7
7
7
7
7
5

=

2

6
6
6
6
6
6
4

C1111 C1122 C1112 0 0 C1133

C1122 C2222 C2212 0 0 C2233

C1112 C2212 C1212 0 0 C1233

0 0 0 C1313 C1323 0
0 0 0 C1323 C2323 0

C1133 C2233 C12331 0 0 C3333

3

7
7
7
7
7
7
5

2

6
6
6
6
6
6
4

zK � 1
11

zK � 1
22

2zK � 1
12

2" 0
13

2" 0
23

" 0
33

3

7
7
7
7
7
7
5
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The Kirchho�-Love plate model Auxiliary Problem

Resolution

The strain is given by:

" 0
�� = zK � 1

�� (Y1; Y2) ; " 0
� 3 = 0 and " 0

33 = �
zC33�� (z)
C3333 (z)

K � 1
�� (Y1; Y2)

The stress is given by:

��
0 = s��

K (z) : K�
� 1 (Y1; Y2) or in components � 0

ij = sK
ij � K � 1

�

where the fourth-order stress localization tensor is:

sK
��� (z) ..= zC �

��� (z) and sK
i3�

..= 0

and
C �

��� = C ��� � C �� 33C33� =C3333

denotes the plane-stress elasticity tensor.
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The Kirchho�-Love plate model Auxiliary Problem

Resolution

By integrating of

" 0
� 3 = 0 =

1
2

u1
�; 3 and " 0

33 = �
zC33��

C3333
K � 1

�� = u1
3;3

We �nd:

u
-

1 = u�-
K : K�

� 1 + U1
3e
-3

=

0

@
0
0

uK
3�� K � 1

�� + U1
3

1

A :

where the displacement localization tensoru�-
K (z) related to the curvature

is given by:

uK
3�� (z) ..= �

" Z z

� 1
2

r
C33��

C3333
dr

#�

and uK
��

..= 0

where [� ]� denotes the averaged-out distribution: [� ]� ..= � � h�i .
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The Kirchho�-Love plate model Auxiliary Problem

Isotropic materials

The leading order strain:

" 0
�� = zK � 1

�� ; " 0
� 3 = 0 and " 0

33 = �
�

1 � �
zK � 1

��

The leading order stress is derived throughC��
� :

2

4
� 0

11
� 0

22
� 0

12

3

5 =

2

6
4

E
1� � 2

E�
1� � 2 0

E
1� � 2 0

SYM E
2(1+ � )

3

7
5

2

4
zK � 1

11
zK � 1

22
2zK � 1

12

3

5

The displacement corrector is:

u
-

1 = u�-
K : K�

� 1 + U1
3e
-3

=

0

@
0
0

�
2(1� � )

� 1
12 � z2

�
K � 1

�� + U1
3

1

A :
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The Kirchho�-Love plate model Macroscopic problem
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The Kirchho�-Love plate model Macroscopic problem

Determination ofU� 1
3

Resultants

The zeroth-order bending moment is de�ned as

M 0
�� (Y1; Y2) ..=



z� 0

��

�
;

The �rst-order shear force is:

Q1
� (Y1; Y2) ..= h� 1

3� i :
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The Kirchho�-Love plate model Macroscopic problem

Determination ofU� 1
3

Equilibrium

Recall that:
� 0

i 3;3 = 0 and � p
i �;� + � p+1

i 3;3 = 0 ; p � 0:

The bending equilibrium equations are:


z

�
� 0

��;� + � 1
� 3;3

��
= 0 = M 0

��;� � Q1
�

The out-of-plane equilibrium equation is:


� 1

3�;� + � 2
33;3

�
= 0 = Q1

�;� + F3

Finally, we have:
M 0

��;�� + F3 = 0
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The Kirchho�-Love plate model Macroscopic problem

Determination ofU� 1
3

Constitutive equation

From D
z��

0
E

=
D

zs��
K (z) : K�

� 1
E

=
D

z2C��
� (z) : K�

� 1
E

we obtain the Kirchho�'s constitutive equation:

M�
0 = D�� : K�

� 1 where: D�� =
D

z2 C��
�
E

The Kirchho�-Love plate equations are:
8
>>>>>><

>>>>>>:

M�
0 :

�
r
- Y


 r
- Y

�
+ F3 = 0 ; on !

M�
0 = D�� : K�

� 1; on !

K�
� 1 = � U � 1

3 r
- Y


 r
-Y

; on !

U � 1
3 = 0 and

�
U � 1

3 
 r
-Y

�
� n
-

= 0 on @!
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The Kirchho�-Love plate model Macroscopic problem

Summary of the Kirchho�-Love model

The displacement is approximated by:

u
-

� � � 1u
-

� 1 + u
-

0 =

0

@
� zU� 1

3;1
� zU� 1

3;2
� � 1U � 1

3

1

A = u
-

LK

The strain "� is approximated by"�
0 6= u

-

LK 
 sr
-

�
(Y ;z) with:

" 0
�� = zK � 1

�� (Y1; Y2) ; " 0
� 3 = 0 and " 0

33 = �
zC33�� (z)
C3333 (z)

K � 1
�� (Y1; Y2)

where
K � 1

�� = � U � 1
3;��

The stress�� is approximated by��
0 such that ��

0 � r
-

�
(Y ;z) 6= 0 and

� 0
�� = zC �

��� (z) K � 1
� and � 0

i 3 = 0
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The Kirchho�-Love plate model Macroscopic problem

Lateral boundary conditions

It should be emphasized that the assumed expansion is not compatible
with clamped lateral boundary conditions. Indeed,

u
-

1 = u�-
K : K�

� 1 + U1
3e
-3

=

0

@
0
0

uK
3�� K � 1

�� + U1
3

1

A 6= 0 :
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The Bending-Gradient plate model Shear e�ects
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The Bending-Gradient plate model Shear e�ects

First-order auxiliary problem

Equilibrium equation for order 0, compatibility equation, boundary
conditions and constitutive equations of order 1 lead to (forz 2 [� 1

2 ; 1
2 ]):

8
>>>><

>>>>:

��
0 � r

-Y
+ ��

1 � r
- z

= 0

��
1 = C�� (z) : "�

1

"�
1 = u

-

2 
 sr
- z

+ u
-

1 
 sr
-Y

��
1
�
z = � 1

2

�
� � e

-3
= 0

8
>>>>>>>>>><

>>>>>>>>>>:

� 0
i �;� + � 1

i 3;3 = 0

� 1
ij = C ijkl " 1

kl

" 1
�� = u1

(�;� ) = 0

" 1
� 3 = 1

2

�
u2

�; 3 + u1
3;�

�

" 1
33 = u2

3;3 = 0

� 1
i 3

�
z = � 1

2

�
= 0
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The Bending-Gradient plate model Shear e�ects

Resolution
Transverse stress

From
8
>><

>>:

� 0
��;� + � 1

� 3;3 = 0

� 0
��;� =

�
sK

��� (z) K � 1
�

�

;�
= zC �

��� (z) K � 1
�;�

� 1
� 3

�
z = � 1

2

�
= 0

we obtain the �rst-order transverse shear stress:

� 1
� 3 = �

Z z

� 1
2

r C �
��� dr K � 1

�;�

A. Leb�ee (Laboratoire Navier) The Bending-Gradient theory 20-26 July 2015 41 / 85



The Bending-Gradient plate model Shear e�ects

Resolution
In-plane stress

From " 1
�� = 0 and " 1

33 = 0 and the constitutive equation:
2

6
6
6
6
6
6
4

� 1
11

� 1
22

� 1
12

� 1
13

� 1
23
0

3

7
7
7
7
7
7
5

=

2

6
6
6
6
6
6
4

C1111 C1122 C1112 0 0 C1133

C2222 C2212 0 0 C2233

C1212 0 0 C1233

C1313 C1323 0
SYM C2323 0

C3333

3

7
7
7
7
7
7
5

2

6
6
6
6
6
6
4

0
0
0

2" 1
13

2" 1
23

0

3

7
7
7
7
7
7
5

we have� 1
�� = 0 and the �rst-order stress localization writes as:

��
1 = s_�

K r (z) :::
�

K�
� 1 
 r

-Y

�

where we de�ned the �fth-order localization tensor as:

sK r
����

..= 0 ; sK r
� 3�� (z) ..= �

Z z

� 1
2

r C �
��� dr and sK r

33��
..= 0
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The Bending-Gradient plate model Shear e�ects

Resolution
Displacement

We �nd that the second-order displacement �eld writes as:

u
-

2 = u_-
K r (z) :::

�
K�

� 1 
 r
-Y

�
� zU1

3 
 r
-Y

=

0

@
� zU1

3;1 + uK r
1�� K � 1

�;�
� zU1

3;2 + uK r
2�� K � 1

�;�
0

1

A

where the displacement localization tensor related to the curvature
gradient writes as:

uK r
��� (z) ..= �

Z z

0

 

4S� 3� 3

Z y

� 1
2

v C �
��� dv + � �� uK

3�

!

dy

and
uK r

3��
..= 0
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The Bending-Gradient plate model Higher orders?
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The Bending-Gradient plate model Higher orders?

The general form of the expansion

It can be formally shown that we have:

u
-

=
U3

�
e
-3

� zU3 
 r
-Y

+ � u�-
K : K� + � 2 u_-

K r ::: K� 
 r
-Y

+ : : :

where

U3
..=

1X

p= � 1

� p+1 Up
3 = � hu3i and K�

..= � U3r
- Y


 r
-Y

We have also for the stress:

�� = s��
K : K� + � s_�

K r ::: K� 
 r
-Y

+ : : :
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The Bending-Gradient plate model Higher orders?

A higher order plate model from asymptotic expansions?

Including shear e�ects...:
I ... from asymptotic expansion?:

U3 2 C6(! )
I ... from the approach from Smyshlyaev and Cherednichenko (2000)?:

U3 2 C4(! )
I ... with the Bending-Gradient theory:

U3 2 C1(! )
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The Bending-Gradient plate model Derivation of the Bending-Gradient theory
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The Bending-Gradient plate model Derivation of the Bending-Gradient theory

Stress localization as function of static variables

The stress �eld can be accurately approximated by:

��
BG = s��

K : �
�

+ � s_�
K r ::: �

�

 r
-Y

�
�

= ( � �� ) (Y1; Y2) is an unknown symmetric second-order tensor �eld.

Choice of�
�

?: The minimum of complementary energy!

The corresponding bending moment is:

M�
BG = D�� : �

�
where D�� =

D
z2 C��

�
E

and d�� = D��
� 1

Its gradient is:

R_ = M�
BG 
 r

-Y
or R�� = M BG

��; with R�� = R��
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The Bending-Gradient plate model Derivation of the Bending-Gradient theory

Stress localization as function of static variables

It is possible to rewrite��
BG in terms ofM�

BG and R_ :

��
BG = s��

K :
�

d�� : M�
BG

�
+ � s_�

K r :::
�

d�� : M�
BG

�

 r
-Y

and

��
BG = s��

M : M�
BG + � s_�

R ::: R_

where the localizations tensors are given by:

s��
M = s��

K : d�� ; s_�
R = s_�

K r : d��
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The Bending-Gradient plate model Derivation of the Bending-Gradient theory

The Bending-Gradient stress energy

Plugging��
BG into the complementary energy of the full 3D problem leads

to the following functional:

P� BG
�

M�
BG; R_

�
=

Z

!
w � KL

�
M�

BG
�

+ � 2w � BG
�

R_

�
d!

where the stress elastic energies are de�ned as:

w � KL
�

M�
BG

�
=

1
2

M�
BG : d�� : M�

BG and w � BG
�

R_

�
=

1
2

TR_ ::: h__ ::: R_

with:
h__ =

D
T
s_�

R : S�� : s_�
R

E

This sixth-order tensor is the compliance related to the transverse shear of
the plate. It is positive, symmetric, but not de�nite in the general case.
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The Bending-Gradient plate model Derivation of the Bending-Gradient theory

Extended plate equilibrium equations
Exact plate equilibrium equations

The total bending moment and the total shear force are de�ned as

M�� (Y1; Y2) = hz� �� i ; and Q� (Y1; Y2) = � � 1 h� 3� i :

Moment equilibrium equations:


z

�
� ��;� + � � 1� � 3;3

��
= M��;� � Q� = 0 or M� � r

-Y
� Q
-

= 0

The out-of-plane equilibrium equation:

� � 1 

� 3�;� + � � 1� 33;3

�
= Q�;� + F3 = 0 or Q

-
� r
-Y

+ F3 = 0
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The Bending-Gradient plate model Derivation of the Bending-Gradient theory

Extended plate equilibrium equations
Link between shear forces and generalized shear forces

Q
-

= M� � r
-Y

is now replaced byR_ = M�
BG 
 r

-Y

We have the following relation:

i�� ::: R_ = M�
BG � r

-Y
= Q

-

BG or R��� = M BG
��;� = QBG

�

where
i��� =

1
2

(� � � �� + � �� � � )

Mechanical meaning ofR_

Q� = R��� ,
�

Q1 = R111 + R122 = M11;1 + M12;2

Q2 = R121 + R222 = M21;1 + M22;2

A. Leb�ee (Laboratoire Navier) The Bending-Gradient theory 20-26 July 2015 50 / 85



The Bending-Gradient plate model Derivation of the Bending-Gradient theory

The Bending-Gradient statically compatible �elds

The Bending-Gradient stress energy must be minimized over the set:

SCBG :

(
R_ = M�

BG 
 r
-Y

or R�� = M BG
��;�

i�� ::: R_

�
� r
-Y

+ F3 = 0 or R���;� + F3 = 0
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The Bending-Gradient plate model Derivation of the Bending-Gradient theory

The Bending-Gradient constitutive equations

Now we de�ne the generalized strains as:

�
�

=
@w � KL

@M�
BG and �_ =

@w � BG

@R_

Note that the third-order tensor has the symmetry:

� �� = � ��

This leads to the following constitutive equations:
(

�
�

= d�� : M�
BG or � �� = d��� M BG

�

�_ = h__ ::: R_ or � �� = h����� R���
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The Bending-Gradient plate model Derivation of the Bending-Gradient theory

Dualization of equilibrium equations

Multiplying R�� = M BG
��; with � �� and integrating by parts on the plate

domain! yield:
Z

!
M BG

�� � ��; + R�� � �� d! =
Z

@!
M BG

�� � �� n dl

Multiplying R���;� + F3 = 0 with UBG
3 and integrating by parts on the

plate domain! yield:
Z

!
R��� UBG

3;� d! =
Z

@!
R��� n� UBG

3 dl +
Z

!
F3UBG

3 d!
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The Bending-Gradient plate model Derivation of the Bending-Gradient theory

Weak formulation

Adding these equations leads to the following expression:
Z

!
M BG

�� � ��; + R��

�
� �� +

1
2

�
� � UBG

3;� + � � UBG
3;�

� �
d! =

Z

!
F3UBG

3 d! +
Z

@!
M BG

�� � �� n + R��� n� UBG
3 dl

Therefore, we have obtained the weak formulation of this plate theory:

V BG
int = V BG

ext

where

V BG
int =

Z

!
M�

BG :
�

�_ � r
-Y

�
+ TR_ :::

�
�_ + i�� � r

-Y
UBG

3

�
d!

V BG
ext =

Z

!
F3UBG

3 d! +
Z

@!
M�

BG :
�

�_ � n
-

�
+

�
i�� ::: R_ � n

-

�
UBG

3 dl

and n
-

is the in-plane unit vector outwardly normal to! .
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The Bending-Gradient plate model Derivation of the Bending-Gradient theory

Kinematic compatibility conditions

We identify the internal power obtained by dualization

V BG
int =

Z

!
M�

BG :
�

�_ � r
-Y

�
+ TR_ :::

�
�_ + i�� � r

-Y
UBG

3

�
d!

with the one obtained with the constitutive equations

V BG
int =

Z

!
M�

BG : �
�

+ � 2TR_ ::: �_ d!

Finally, we de�ne the set of kinematically compatible �elds as

KCBG :

( �
�

= �_ � r
-Y

� 2�_ = �_ + i�� � r
-Y

UBG
3

to which the following boundary conditions must be added for a clamped
plate:

UBG
3 = 0 and �_ � n

-
= 0 on @!
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The Bending-Gradient plate model Derivation of the Bending-Gradient theory

Summary

The Bending-Gradient plate theory equations are the following:
8
>>>>>><

>>>>>>:

R_ = M�
BG 
 r

-Y
and

�
i�� ::: R_

�
� r
-Y

+ F3 = 0 on !

�
�

= d�� : M�
BG and �_ = h__ ::: R_ on !

�
�

= �_ � r
-Y

and � 2�_ = �_ + i�� � r
-Y

UBG
3 on !

UBG
3 = 0 and �_ � n

-
= 0 on @!

Note that:

�
�

= K�
BG + � 2�_ � r

-Y
where K�

BG = � UBG
3 r

- Y

 r
-Y

Setting � 2 = 0 in the Bending-Gradient model leads exactly to
Kirchho�-Love plate model.
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The Bending-Gradient plate model Derivation of the Bending-Gradient theory

3D localization

Once the exact solution of the macroscopic problem is derived, it is
possible to reconstruct the local displacement �eld. We suggest the
following 3D displacement �eld whereUBG, �_ are the �elds solution of the
plate problem:

u
-

BG =
UBG

3

�
e
-3

� zUBG
3 
 r

-Y
+ � u�-

K : �
�

+ � 2 u_-
K r :::

�
�
�


 r
-Y

�

De�ning the strain as
"�

BG = S�� : ��
BG

it is possible to check that:

"
�

u
-

BG
�

(Y ;z)
� "�

BG = � 2
��

�� 
 su_-
K r

�
::

�
�
�


 r
-

2
Y

�
+ z�_ � r

-Y

�
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The Bending-Gradient plate model The Reissner-Mindlin theory for homogeneous plates
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The Bending-Gradient plate model The Reissner-Mindlin theory for homogeneous plates

Homogeneous plates

In this case, we have:

��
BG =

8
>>><

>>>:

� BG
�� = 12z i��� M BG

� = 12zMBG
��

� BG
� 3 = � 3

2

�
1 � 4z2

�
i��� R�� = � 3

2

�
1 � 4z2

�
QBG

�

� BG
33 = 0

which is a function ofM�
BG and Q

-

BG = i�� ::: R_ instead of the wholeR_
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The Bending-Gradient plate model The Reissner-Mindlin theory for homogeneous plates

The constitutive equations

The Bending-Gradient part of the stress energy becomes:

w � BG
�

R_

�
=

1
2

TR_ ::: h__ ::: R_ =
1
2

Q
-

BG � h�
RM � Q

-

BG

with:
h__ = i�� � h�

RM � i��
where the Reissner's shear forces sti�ness is given by:

hRM
�� =

6
5

S� 3� 3

(it is equal to 6
5G � �� with G the shear modulus for isotropic plates). The

Bending-Gradient constitutive equation becomes:

�_ = h__ ::: R_ = i�� � 
-

with

-

= h�
RM � Q

-

BG
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The Bending-Gradient plate model The Reissner-Mindlin theory for homogeneous plates

The kinematics

Using the kinematic compatibility

� 2�_ = �_ + i�� � r
-Y

UBG
3 ;

we �nd that �_ is also of the form:

�_ = i�� � '
-

where'
-

is the classical rotation vector of the Reissner theory. Therefore,

the kinematic unknowns areUBG
3 and '

-
, and we have:

(
�
�

= '
-


 sr
-Y

= d�� : M�
BG

� 2
-

= '
-

+ UBG
3 
 r

-Y
= � 2h�

RM � Q
-

BG
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The Bending-Gradient plate model The Reissner-Mindlin theory for homogeneous plates

Static

The following boundary conditions must be added for a clamped plate:

UBG
3 = 0 and '

-
= 0 on @!

Finally, the balance equations are:

(
M�

BG � r
-Y

� Q
-

BG = 0 on !

Q
-

BG � r
-Y

+ F3 = 0 on !

In conclusion: the Bending-Gradient theory completely coincides for
homogeneous plates with the Reissner-Mindlin model.
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The Bending-Gradient plate model Distance between the BG and the RM models
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The Bending-Gradient plate model Distance between the BG and the RM models

Distance between the BG and the RM models

We introduce the following relative distance:

� RM/BG =
kh__

Wk

kh__ k

where
kh__ k =

q
Th__ ::::::h__

is the norm for Bending-Gradient compliance tensors andh__
W is the pure

warping part ofh__ :

h__
W = h__ �

4
9

i�� � i�� ::: h__ ::: i�� � i��

� RM/BG gives an estimate of the pure warping fraction of the shear stress
energy. When the plate constitutive equation is restricted to a
Reissner-Mindlin one we have exactly �RM/BG = 0.
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The Bending-Gradient plate model Distance between the BG and the RM models

Distance between the BG and the RM models

x1
x2

x3

�

Stack [0� ] [30� ; � 30� ]s [0� ; � 45� ; 90� ; 45� ]s

� RM/BG 0 16.0% 12.4%

Table: The criterion � RM/BG for several laminates
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Applications of the Bending-Gradient theory to laminates
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Applications of the Bending-Gradient theory to laminates Voigt Notations
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Applications of the Bending-Gradient theory to laminates Voigt Notations

Voigt Notations

We introduce the linear operator
h
��

i
reallocating tensor components. For

instance, the bending moment and the curvature are reallocated in a
vector form:

h
M�

i
=

0

@
M11

M22p
2M12

1

A and
h
�
�

i
=

0

@
� 11

� 22p
2� 12

1

A

and the fourth-order compliance tensord�� is reallocated in a matrix form

h
d��

i
=

0

@
d1111 d2211

p
2d1211

d2211 d2222
p

2d1222p
2d1211

p
2d1222 2d1212

1

A

so that the constitutive equation

�
�

= d�� : M� becomes
h
�
�

i
=

h
d��

i
�
h
M�

i

The same forD�� and C��
� .
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Applications of the Bending-Gradient theory to laminates Voigt Notations

Voigt Notations

The constitutive sixth-order tensorh__ is turned into the 6� 6 matrix
h
h__

i
:

0

B
B
B
B
B
B
B
@

h111111 h111122
p

2h111121 h111211 h111222
p

2h111221

h221111 h221122
p

2h221121 h221211 h221222
p

2h221221p
2h121111

p
2h121122 2h121121

p
2h121211

p
2h121222 2h121221

h112111 h112122
p

2h112121 h112211 h112222
p

2h112221

h222111 h222122
p

2h222121 h222211 h222222
p

2h222221p
2h122111

p
2h122122 2h122121

p
2h122211

p
2h122222 2h122221

1

C
C
C
C
C
C
C
A

The third-order tensors�_ and R_ are reallocated in a vector form:

h
�_

i
=

0

B
B
B
B
B
B
@

� 111

� 221p
2� 121

� 112

� 222p
2� 122

1

C
C
C
C
C
C
A

;
h
R_

i
=

0

B
B
B
B
B
B
@

R111

R221p
2R121

R112

R222p
2R122

1

C
C
C
C
C
C
A

and
h
�_

i
=

h
h__

i
�
h
R_

i
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Applications of the Bending-Gradient theory to laminates Cylindrical bending of laminates
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Applications of the Bending-Gradient theory to laminates Cylindrical bending of laminates

Pagano's boundary value problem(Pagano, 1969)

CFRP layers with di�erent orientiations:F3(Y1) = � F0 sin� Y1 where
� = 1=� = 1

n� ; n 2 N+ � is the non-dimensional wavelength of the loading.

z � 2F3=2

� 2F3=2 8
<

:

� 11(z) = 0
� 12(z) = 0
u3(z) = 0

Y1

Y2

1

Invariant in x2-Direction, \periodic" in x1-Direction
) No boundary layer!
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Applications of the Bending-Gradient theory to laminates Cylindrical bending of laminates

Resolution of the Bending-Gradient problem

All the non-dimensional �elds are invariant inY2-Direction
From � �� = � ��; , we obtain:

h
�
�

i
=

0

@
� 11

� 22p
2� 12

1

A =

0

@
� 111;1

� 221;1p
2� 121;1

1

A =

0

@
� 1;1

� 2;1

� 3;1

1

A

The equilibrium equations write as:

h
R_

i
=

0

B
B
B
B
B
B
@

R111

R221p
2R121

R112

R222p
2R122

1

C
C
C
C
C
C
A

=

0

B
B
B
B
B
B
@

M11;1

M22;1p
2M12;1

0
0
0

1

C
C
C
C
C
C
A

and M11;11 = � F3(Y1)
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Applications of the Bending-Gradient theory to laminates Cylindrical bending of laminates

Shear constitutive equation

Taking into accountR112 = R222 = R122 = 0, U3;2 = 0, shear constitutive
equation is rewritten in two parts.
A �rst part with unknowns involving active boundary conditions:

0

@
� 1

� 2

� 3

1

A = � 2

0

@
h11 h12 h13

h12 h22 h23

h13 h23 h33

1

A �

0

@
M11;1

M22;1p
2M12;1

1

A �

0

@
U3;1

0
0

1

A

and a second part which enables the derivation of �4 = � 112, � 5 = � 222,
� 6 =

p
2� 122 on which no boundary condition applies:

0

@
� 4

� 5

� 6

1

A = � 2

0

@
h41 h42 h43

h51 h52 h53

h61 h62 h63

1

A �

0

@
M11;1

M22;1p
2M12;1

1

A �

0

@
0
0

U3;1=
p

2

1

A

A. Leb�ee (Laboratoire Navier) The Bending-Gradient theory 20-26 July 2015 68 / 85



Applications of the Bending-Gradient theory to laminates Cylindrical bending of laminates

Final System

Finally, combining the above equations leads to the following set of
equations which fully determines the problem:

8
>>>>>>>><

>>>>>>>>:

M11;11 = F0 sin� Y1

h
d��

i
�
h
M�

i
� � 2h� �

h
M�

i

;11
=

0

@
U3;11

0
0

1

A

h
M�

i
= 0 for Y1 = 0 and Y1 = 1

U3 = 0 for Y1 = 0 and Y1 = 1

where for convenience,h� is the 3� 3 submatrix of
h
h__

i
:

h� =

0

@
h11 h12 h13

h12 h22 h23

h13 h23 h33

1

A
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Applications of the Bending-Gradient theory to laminates Cylindrical bending of laminates

Solution

This di�erential system is well-posed and the solution is unique. Its is of
the form:

h
M�

i
=

h
M �

�

i
sin� Y1 and U3 = U�

3 sin� Y1

where
h
M �

�

i
and U�

3 are constants explicitly known in terms of the
problem inputs.
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Applications of the Bending-Gradient theory to laminates Numerical illustrations
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Applications of the Bending-Gradient theory to laminates Numerical illustrations

Stress distributions for a [30� ; � 30� ; 30� ] stack
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Applications of the Bending-Gradient theory to laminates Numerical illustrations

Convergence for a [30� ; � 30� ; 30� ] stack

�( � ) rate: KL � t and BG� t 2

�( U3) rate: KL � t 2 and BG� t 2
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Periodic plates Extension to periodic plates

Assumptions

I The same 3D problem as for laminates butC��
t
�
x
-

�

depends now on the three coordinates.

I C��
t
�
x
-

�
is periodic in the two �rst coordinates (x1; x2).

I The in-plane dimension of the unit cell is comparable to
its thicknesst .

I t is small with respect to the in-plane dimension of the
plate L.
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Periodic plates Extension to periodic plates

Extension to periodic plates

I Bending auxiliary problem (Caillerie, 1984)

PK

8
>>>>>>>>>>>><

>>>>>>>>>>>>:
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-
= 0
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K = C��
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y
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skew-periodic on lateral edge@Yl

u
-

per(y
-

) (y1; y2)-periodic on lateral edge@Yl

! gives:

Localizationu
-

K ��
K related to the curvatureK�

Bending sti�ness:D��

I Shear auxiliary problem
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Periodic plates Extension to periodic plates

Extension to periodic plates

I Bending auxiliary problem (Caillerie, 1984)

I Shear auxiliary problem

PR
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! gives:

Localizationu
-
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R related toR_

Shear compliance tensor:h__
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Periodic plates The case of cellular sandwich panels
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Periodic plates The case of cellular sandwich panels

Justi�cation of the Sandwich Theory

I Divide in 3 layers
(homogeneous skins and heterogeneous core)

I Bending auxiliary problem
I Shear auxiliary problem
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Periodic plates The case of cellular sandwich panels

Justi�cation of the Sandwich Theory

I Divide in 3 layers
(homogeneous skins and heterogeneous core)

I Bending auxiliary problem
I Contrast assumption, t f � ts:

! ts=t f Contrast ratio
) Skins under traction/compression
) Core not involved in Bending sti�ness

I Shear auxiliary problem
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Periodic plates The case of cellular sandwich panels

Justi�cation of the Sandwich Theory

I Divide in 3 layers
(homogeneous skins and heterogeneous core)

I Bending auxiliary problem
I Shear auxiliary problem

I f
-

R becomesf
-

(Q) + Direct homogenization scheme
I The BG is degenerated into RM model
I f
-

(Q) con�rms the classical intuition

Leb�ee and Sab (2012a)
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Periodic plates The case of cellular sandwich panels

Application to the chevron pattern
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Periodic plates The case of cellular sandwich panels

Application to the chevron pattern

Bending:
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Periodic plates The case of cellular sandwich panels

Application to the chevron pattern

Shear forces
localization��

(Q)

I Overall shearing
of the core

I Out-of-plane
skins distorsion

I Critically
inuence shear
force sti�ness
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Periodic plates The case of cellular sandwich panels

Application to the chevron pattern

Shear forces
localization��

(Q)

I Overall shearing
of the core

I Out-of-plane
skins distorsion

I Critically
inuence shear
force sti�ness

&
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Periodic plates The case of cellular sandwich panels

Application to the chevron pattern

Shear forces
localization��

(Q)

I Overall shearing
of the core

I Out-of-plane
skins distorsion

I Critically
inuence shear
force sti�ness

Leb�ee and Sab (2012b)
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Periodic plates Why all plates are not \Reissner" like?
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Periodic plates Why all plates are not \Reissner" like?

Homogenizing an orthogonal beam lattice

=

+Thick-plate model(macro) 2 St-Venant Beams(micro)

Localization
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Periodic plates Why all plates are not \Reissner" like?

Field localization
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Apply M� "on average" on the unit-cell (Caillerie, 1984)
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Periodic plates Why all plates are not \Reissner" like?

Field localization

� bM12

bM11

bM12bM22

e
-2

e
-1

1

2

� bR122(s
�

b
2
)

bR121(s
�

b
2
)

e
-2

e
-1

bR122(s� b
2)

bR121(s� b
2)bQ1

bQ2

Bending moment
�
r
-

(M ) ; m
-

(M )
�
:

Apply M� "on average" on the unit-cell (Caillerie, 1984)

Bending gradient
�
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(R) ; m
-

(R)
�
:

AssumeM �� = R�� x (Leb�ee and Sab, 2013a)
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Periodic plates Why all plates are not \Reissner" like?

Field localization

� bM12
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2)bQ1

bQ2

Bending moment
�
r
-

(M ) ; m
-

(M )
�
:

Apply M� "on average" on the unit-cell (Caillerie, 1984)

Bending gradient
�
r
-

(R) ; m
-

(R)
�
:

AssumeM �� = R�� x (Leb�ee and Sab, 2013a)

Reissner-Mindlin
�
r
-

(Q) ; m
-

(Q)
�
:

Assume cylindrical bending(Whitney, 1969; Cecchi and Sab, 2007)
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Periodic plates Why all plates are not \Reissner" like?

Application: lattice rotated 45� and cylindrical bending

I Exact solution
I Plate solution + Localization

(RM and BG)
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Periodic plates Why all plates are not \Reissner" like?

Application: lattice rotated 45� and cylindrical bending

I Exact solution
I Plate solution + Localization

(RM and BG)
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