Accéder directement au contenu Accéder directement à la navigation
Pré-publication, Document de travail

ABEL UNIVERSAL SERIES

Abstract : Given a sequence = (r n) n ∈ [0, 1) tending to 1, we consider the set U A (D,) of Abel universal series consisting of holomorphic functions f in the open unit disc D such that for any compact set K included in the unit circle T, different from T, the set {z → f (r n •)| K : n ∈ N} is dense in the space C(K) of continuous functions on K. It is known that the set U A (D,) is residual in H(D). We prove that it does not coincide with any other classical sets of universal holomorphic functions. In particular, it not even comparable in terms of inclusion to the set of holomorphic functions whose Taylor polynomials at 0 are dense in C(K) for any compact set K ⊂ T different from T. Moreover we prove that the class of Abel universal series is not invariant under the action of the differentiation operator. Finally an Abel universal series can be viewed as a universal vector of the sequence of dilation operators T n : f → f (r n •) acting on H(D). Thus we study the dynamical properties of (T n) n such as the multi-universality and the (common) frequent universality. All the proofs are constructive.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-03538642
Contributeur : Stéphane Charpentier Connectez-vous pour contacter le contributeur
Soumis le : mardi 19 juillet 2022 - 16:32:55
Dernière modification le : mercredi 14 septembre 2022 - 03:22:15

Fichiers

Abel_Universality_ArxivV2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-03538642, version 2
  • ARXIV : 2201.09542

Citation

S Charpentier, A Mouze. ABEL UNIVERSAL SERIES. 2022. ⟨hal-03538642v2⟩

Partager

Métriques

Consultations de la notice

58

Téléchargements de fichiers

6