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Abstract

High speed trains are currently meant to run faster and to carry heavier
loads, while being less energy consuming and still respecting the security and
comfort certification criteria. To face these challenges, a better understanding
of the interaction between the dynamic train behavior and the track geometry
is needed. As during its lifecycle, the train faces a great variability of track
conditions, this dynamic behavior has indeed to be characterized on track
portions sets that are representative of the whole railway network. This paper
is thus devoted to the development of a stochastic modeling of the track
geometry and its identification with experimental measurements. Based on
a spatial and statistical decomposition, this model allows the spatial and
statistical variability and dependency of the track geometry to be taken into
account. Moreover, it allows the generation of realistic track geometries that
are representative of a whole railway network. First, this paper describes
a practical implementation of the proposed method and then applies this
method to the modeling of a particular French high speed line, for which
experimental data are available.
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1. Introduction

The expected benefits of simulation in the railway field are multiple: ro-
bust and optimized conception, shorter and cheaper certification procedure,
better knowledge of the critical situations of the track/vehicle system, op-
timization of the maintenance. However, if simulation is introduced in cer-
tification and conception processes, it has to be very representative of the
physical behavior of the system. The model has thus to be fully validated
and the simulations have to be raised on a realistic and representative set of
excitations.

Two kinds of inputs are traditionally introduced in a railway simula-
tion: the vehicle model V and the track geometry T . Multibody simulations
are usually employed to model the train dynamics. Carbodies, bogies and
wheelsets are therefore modeled by rigid bodies and are linked with connec-
tions represented by rheologic models (damper, springs, ...).

Two description scales can then be distinguished for the track geometry.
On the first hand, the track design, which corresponds to the mean line posi-
tion of a perfect track is decided once for all at the building of a new track for
economical and political reasons. This description is characterized by three
curvilinear quantities: the vertical curvature cV , the horizontal curvature cH ,
and the track superelevation cL. On the other hand, for a fixed track design,
the actual positions of the rails are in constant evolution, which is mostly due
to the interactions between the train, the track and the substructure. The
irregularities appearing during the track lifecycle are indeed of four types
(see Figure 1): lateral and vertical alignment irregularities X1 and X2 on the
one hand, cant deficiencies X3 and gauge irregularities X4 on the other hand.
Therefore, each rail position Rℓ/r (ℓ refers to the left rail whereas r refers to
the right rail) can be written as the sum of a mean position M ℓ/r, which only
depends on the curvilinear abscissa of the track, s, the track gauge E, and the
three parameters of the track design, cH , cV and cL, and a deviation toward
this mean position Iℓ/r, which only depends on the track irregularities:

Rℓ/r(s) = M ℓ/r (s) + Iℓ/r (s) , (1)

M ℓ/r(s) = ONT(s)±
E

2
N(s), (2)
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Figure 1: Parametrization of the track irregularities (for each rail, the mean
position is represented in black, whereas the real position is in grey).

Iℓ/r(s) = {X2(s)± X3(s)}B(s) + {X1(s)± X4(s)}N (s), (3)

where − goes with the subscript ℓ and + goes with r in the symbol ±,
ONT(s) = (M ℓ(s) + M /r(s))/2 is the mean position of the two rails, and
(ONT(s),T(s),N(s),B(s)) is the Frenet frame.

Hence, made up of straight lines and curves at its construction, the new
track is gradually damaged and regularly subjected to maintenance opera-
tions. During their lifecycles, trains are therefore confronted to very different
running conditions. The track-vehicle system being strongly non-linear, the
dynamic behavior of trains has thus to be analyzed not only on a few track
portions but on this whole realm of possibilities.

In reply to these expectations, the measurement train IRIS 320 has been
running continuously since 2007 over the French railway network, measuring
and recording the track geometry of the main national lines. This systematic
measurement of the railway network quality and variability makes up a very
useful database to analyze the complex link between the train dynamics and
the physical and statistical properties of the track geometry.

Based on these experimental measurements, a complete parametrization
of the track geometry and of its variability would be of great concern in spec-
ification, security and certification prospects, to monitor more systematically
the appearing track irregularities and to be able to generate track geometries
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that are realistic and representative of a whole railway network.
To this end, the random irregularities can be statistically characterized

using a one-sided power spectral density (PSD) function of the track geome-
try [1, 2, 3]. In this case, the PSD functions of each track irregularity can be
either estimated from the available measured track geometries or from track
safety standards such as the ones given by the Federal Railroad Administra-
tion [4]. Track irregularities can then by generated from these PSD functions
from a time-frequency transformation based on a spectral representation (see
[5, 6] for further details). In such a method, the railway track irregularities
are thus considered as four independent Gaussian random fields, which are
supposed to be stationary and ergodic in space. By definition, these track
irregularities are however strongly dependent, and due to the specific inter-
action between the train and the track, they are actually neither Gaussian
nor stationary.

In this context, the present work proposes a method to identify, in in-
verse, from measured data, the statistical properties of this vector-valued,
non-Gaussian and non-stationary track irregularity random field. These data
being complete, this modeling allows us to generate numerically track geome-
tries that are physically realistic and statistically representative of the set of
available track measurements, while taking into account the dependencies
between the four kinds of track irregularities.

These tracks can then be used in any deterministic railway dynamic soft-
ware to characterize the dynamic behavior of the train. Hence, this modeling
could bring an innovative technical answer to introduce numerical methods
and treatments in the maintenance and certification processes.

In Section 2, the stochastic modeling of the track geometry from experi-
mental data and the hypothesis on which this modeling is based are described
in details. Section 3 presents then the spectral and statistical validation of
the method.

2. Track geometry stochastic modeling

The mean line of the track geometry being chosen at the building of a
new line, this work is only devoted to the modeling of the track irregularity
vector

X = (X1,X2,X3,X4) , (4)

where X1, X2, X3 and X4 are the four types of track irregularities previously
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introduced. In this work, it is supposed that the track geometry of a given
railway network has been measured. The track irregularity vector,

{
X(s) = (X1(s),X2(s),X3(s),X4(s)) , s ∈ [0, Stot]

}
, (5)

is assumed to be a second-order centered random field, such that:

E [X(s)] = 0, s ∈ [0, Stot], (6)

with E [·] the mathematical expectation. Due to the specific interaction
between the train and the track, it is recalled that this random field is neither
Gaussian nor stationary.

To characterize the statistical properties of such a random field, this work
proposes a three-step method. First, a local-global approach is introduced,
which allows us to focus the stochastic modeling only on the projection of
X on the interval Ω = [0, S], with S ≪ Stot. Then, a Karhunen-Loève
(KL) expansion is carried out, which allows us to write X as a weighted
sum of deterministic spatial functions. The identification of the multidimen-
sional distribution of these weights, which are non correlated but a priori

dependent random variables, is finally performed using a polynomial chaos
expansion (PCE). At last, it will be shown in what extent such a method
allows the generation of realistic track geometries that are representative of
the measured railway network.

2.1. Local-global approach

The non Gaussian and non stationary properties of track irregularity
random field X motivate the introduction of a local-global approach for the
characterization of its distribution. This approach is based on the hypoth-
esis that a whole railway track can be considered as the concatenation of
a series of independent track portions of same length S, for which physical
and statistical properties are the same. Length S plays therefore a key role
in the modeling procedure, and its value has to be carefully evaluated. In
order to choose length S such that its influence on the stochastic modeling
is minimized, ν track portions of same length L = 10km,

{
z(1), . . . , z(ν)

}
,

have been collected from the available measurements of the railway network
of interest. For any value for S, we denote by

{
y(1)(S), . . . ,y(ν)(S)

}
the ν
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new track geometries of total length L, which are then built from the con-
catenation of track sub-sections of length S that have been randomly chosen
in

{
z(1), . . . , z(ν)

}
.

Three errors functions, for which definitions can be found in Appendix
A, are therefore introduced in this paper to quantify the influence of S:

• a covariance error, err2cov(S): fixing S to a particular value amounts to
supposing that for |s− s′| ≥ S, E

[
X(s)X(s′)T

]
is negligible;

• a spectral error, err2spect(S): generating complete track geometries from
the concatenation of several track portions of length S introduces an
artificial periodicity and is likely to degrade the low frequency charac-
terization of X;

• an estimation error, err2est(S): the higher S is, the smaller the num-
ber of independent realizations for X, νexp(S), can be extracted from
the complete measurement of the railway network of interest. This
error is therefore directly related to the estimation accuracy of the co-
variance function of X, and to the identification precision of the PCE
coefficients, on which the modeling will then be based. With reference
to the Central Limit Theorem (see [7] for further details), we simply
choose err2est(S) = 1/

√
νexp(S) to illustrate this phenomenon.

For the chosen railway network, based on these sets of track geometries
of same lengths L = 10km, errors err2cov(S), err

2
spect(S) and err2est(S) are

represented in Figure 2. When S increases, it can be verified that err2cov(S)
and err2spect(S) decrease whereas err2est(S) increases. Length S has thus to
be chosen as the right balance between these three error functions.

For confidentiality reasons, the exact value of S is however not given in
this work, and the spatial quantities will be normalized by length S in the
following.

Under this local-global hypothesis, νexp = 1, 730 track portions of same
length S are now extracted from the complete railway network of total length
Stot. These measurements are supposed to be νexp independent realizations
of random field X, which defines the maximum available information for the
stochastic modeling. These portions are in practice discretized at a spatial
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Figure 2: Graphs of errors err2cov(S), err
2
spect(S) and err2est(S) for the

computation of the local-global length S.

step h that is sufficiently small for the statistical and spectral information of
X to be completely taken into account. The experimental discretized data
are thus assumed to be complete. Hence, random field X can be identified
to its NS-dimension discretized projection X, with NS = 4(S/h + 1), such
that:

X =




X1

X2

X3

X4


 , X t =




Xt(0)
Xt(h)

...
Xt(S)


 , 1 ≤ t ≤ 4. (7)

The random vector X is still called irregularity vector, whereas measured
track portions are denoted by

{
x1, · · · ,xνexp

}
and will now be considered as

νexp independent realizations of random vector X. Therefore, the covariance
matrix, [CXX ], of X can be estimated, for νexp sufficiently large, by:

[CXX ] = E
[
XXT

]

≈ [ĈXX ] =
1

νexp

νexp∑

i=1

x(i)
(
x(i)

)T
.

(8)

Approximation [Ĉ11] of [C11] = E
[
X1X

T
1

]
is presented in Figure 3. This
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figure emphasizes a quasi symmetry along the first bisector. The first column,

Ĉ
ij

1 , of matrices [Ĉij ] = [Ĉ
ij

1 · · · Ĉ
ij

NS/4
] can thus be used to condense the

covariance information of each block. Figure 3 compares also the four first

columns, Ĉ
tt

1 , 1 ≤ t ≤ 4, of the diagonal blocks of [ĈXX ]. It can be noticed
that the covariance matrices are very different from one track irregularity to
another.

2.2. KL and PCE expansions

The objective of the stochastic modeling is to identify in inverse the sta-
tistical properties of irregularity vector X from the νexp independent real-
izations {x1, · · · ,xνexp}. A two-step approach is introduced in this work to
characterize the distribution of X. First, a spatial and statistical representa-
tion is achieved, which is based on a Karhunen-Loève (KL) expansion. This
very efficient method, which has first been introduced by Pearson [8] in data
analysis, has been applied in many works for the last decades (see, for in-
stance [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]).
It is indeed particularly interesting as it allows the uncorrelation of the pro-
jection coefficients of X on the KL vector basis, while optimally compacting
the signal energy. The Karhunen-Loève expansion (see [28, 29] for further
details) and more precisely the Principle Component Analysis of centered
random vector X can be written as:

X =

NS∑

k=1

√
λ̂kû

k ηk, (9)
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in which
{
λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂NS

}
are the eigenvalues and

{
û

1, · · · , ûNS

}
are

the associated eigenvectors, which are solutions of the eigenvalue problem:

[ĈXX ]û = λ̂û, (10)

in which matrix [ĈXX ] is defined by Eq. (8). Projection basis
{
û

1, · · · , ûNS

}

is chosen orthonormal in the sense that, for all k and ℓ:

(
û

ℓ
)T

û
k = δkl, (11)

where δkl is the Kronecker symbol, equal to one if k = ℓ and zero otherwise.
In the same manner than the track irregularity vector is the concatenation of
four random sub-vectors corresponding to the four track irregularities, such
that X = (X1,X2,X3,X4), the components of ûk can be divided in four
sub-vectors of same dimension NS/4, which are denoted by û

k
1, û

k
2, û

k
3 and

û
k
4. It has to be noticed that, for a particular eigenvector ûk, if the norms of

at least two sub-vectors, (ûk
t )

T û
k
t and (ûk

r)
T û

k
r , for 1 ≤ t < r ≤ 4, are non

negligible, then, a spatial dependency is introduced in the modeling between
the track irregularities t and r. We compare in Figure 4 several graphs of
eigenvectors û

k. For a better visualization, the mean values of the different
sub-vectors, which are zero, are deliberately translated.

The coefficients {η1, · · · , ηNS
}, such that:

ηk =
XT û

k

√
λ̂k

, (12)

are moreover uncorrelated random variables, for which mean is zero and
variance is equal to one. Based on the eigenvalues decrease, random vector
X can then be approximated by its truncated expansion with Nη terms,
X(Nη), such that:

X =

Nη∑

k=1

√
λ̂kû

k ηk, (13)

for which the truncation residual error, X − X(Nη), is evaluated by the
normalized L2 error, ε2KL(Nη), such that:
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ε2KL(Nη) =

∥∥∥X −X(Nη)
∥∥∥
2

2

‖X‖22
= 1−

∑
k≤Nη

λk

‖X‖22
, (14)

where for all second order random vector Z,

‖Z‖22 = E
[
ZTZ

]
. (15)

The evolution of error ε2KL(Nη) with respect to Nη is plotted in Fig-
ure 5. The higher Nη, the more precise the characterization of the track
geometry, but the more difficult the characterization of the random vector
η =

(
η1, . . . , ηNη

)
. As a good compromise, the truncation parameter Nη is

fixed to the value 940 in the following, which corresponds to an error thresh-
old of 1% for ε2KL.

The second step of the modeling of X is the characterization of the mul-
tidimensional probability density function (PDF) of η, which is denoted by
pη. Two kinds of methods can be used to build such a PDF: the direct
and the indirect methods. Among the direct methods, methods based on

11



Information Theory and the Maximum Entropy Principle (MEP) have been
developed (see [30] and [31]) to directly compute pη from the only available
information of random vector η, as the solution of an optimization problem.
On the other hand, the indirect methods allow the construction of the PDF
pη of the considered random vector η from a transformation t of a known
Nη-dimensional random vector ξ:

η = t(ξ), pη = T(pξ), (16)

defining a transformation T between pη and the known PDF pξ of ξ. The
construction of the transformation t is thus the key point of these indirect
methods. Among these methods, the polynomial chaos expansion (PCE)
methods, which have first been proposed by Wiener [32], and spread to
computational sciences by Ghanem and Spanos [33, 28], are based on a di-
rect projection of random vector η on a chosen polynomial Hilbertian basis
Borth = { ψj(ξ), 1 ≤ j } of all the second-order random vectors with values
in R

Nη , such that:

η =

+∞∑

j=1

y(j)ψj(ξ). (17)

In the last decades, this very promising method has therefore been applied
in many works (see [34, 35, 36, 37, 38, 39, 40, 41, 42] for more details about the
inverse PCE identification from experimental data). For practical purposes,
the sum that is defined by Eq. (17) has however to be truncated. We
therefore define

{
ψ1(ξ1, . . . , ξNg

), · · · , ψN(ξ1, . . . , ξNg
)
}

as the N -dimensional
subset of Borth that gathers the polynomial functions of total degree inferior
to p, which are normalized with respect to the PDF pξ1,...,ξNg

of the Ng first
elements of random vector ξ, such that:

η ≈ ηchaos(N) =

N∑

j=1

y(j)ψj(ξ1, . . . , ξNg
), (18)

ψj(ξ1, . . . , ξNg
) =

N∑

q=1

cqj ξ
α
(q)
1

1 × · · · × ξ
α
(q)
Ng

Ng
, 0 ≤ α

(q)
1 + . . .+ α

(q)
Ng

≤ p, (19)

∫

R
Ng

ψj(x)ψn(x)pξ1,...,ξNg
(x)dx = δjn. (20)
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Given values ofN andNg, characterizing pη amounts finally to identifying
the deterministic projection vectors

{
y(1), . . . ,y(N)

}
from the available infor-

mation for η. According to Eq. (12), this available information corresponds
to the νexp independent realizations of ηchaos(N), {η1, · · · ,ηνexp}, which can
be deduced from the νexp independent realizations of X, {x1, · · · ,xνexp}, as:

ηik =
1√
λ̂k

(
xi
)T

û
k, 1 ≤ i ≤ νexp, 1 ≤ k ≤ Nη. (21)

In [40, 41], it has been shown that a good approach to identify such coef-
ficients in high dimension (that is to say when Nη is high) is to search them
as the arguments that maximize the likelihood of random vector ηchaos(N)
at the experimental points {η1, · · · ,ηνexp}.

Finally, the last step of this identification is the justification of the values
of the truncation parameters N and Ng. In this prospect, the log-error
function err(N,Ng) is introduced to quantify the amplitude of the residual
error of the PCE truncation, η − ηchaos(N), such that:

err(N,Ng) =

Nη∑

k=1

errk(N,Ng), (22)

errk(N,Ng) =

∫

BIk

∣∣∣log10 (pηk(xk))− log10

(
pηchaos

k
(xk)

)∣∣∣ dxk, (23)

where BIk is the domain bounding the experimental values of ηk, pηk and
pηchaos

k
are the PDFs of ηk and ηchaosk (N) respectively. Truncation parameters

N and Ng can thus be chosen with respect to a given error threshold for
err(N,Ng).

For our study, ξ is a Nη-dimension random vector, whose components
are independent and uniformly distributed between -1 and 1. According to
Figure 6, where err(N,Ng) is plotted against N for different values of Ng,
truncation parametersNg andN are chosen equal to 3 and 3, 276 respectively,
which corresponds to the maximal polynomial order p = 25 for the reduced
polynomial basis,

{
ψ1(ξ1, . . . , ξNg

), · · · , ψN(ξ1, . . . , ξNg
)
}
.

2.3. Generation of a whole track geometry

Once truncation parameters Nη, N , Ng have been identified according
to convergence analysis, and PCE projection coefficients

{
y(j), 1 ≤ j ≤ N

}

13
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have been computed with the advanced algorithms described in [41] and [40],
the track irregularity random field is completely characterized and can finally
be estimated from Eqs. (13) and (18) as:

X ≈

Nη∑

k=1

√
λ̂kû

k
N∑

j=1

y
(j)
k ψj(ξ1, . . . , ξNg

). (24)

For each realization of random vector (ξ1, . . . , ξNg
), a representative and

realistic track geometry of length S can finally be generated. Thanks to
the local-global approach, described in Section 2.1, a whole track geometry
of length Stot = NT S (NT can be smaller or greater than νexp), X tot, can
therefore be constructed from NT independent copies X(1), · · · ,X(NT ) of
track irregularity vector X, such that Xtot = (X(1), · · · ,X(NT )).

Therefore, ν independent realizations
{
Xtot(θ1), · · · ,X

tot(θν)
}

of Xtot

can be generated from νNT realizations of irregularity vector X. However,
for each particular realization Xtot(θm) of X tot, a particular attention has to
be paid to the interface between the different realizations of X. Indeed, these
junctions have to guarantee the continuity of the track irregularity vector
and at least the continuity of its first and second order spatial derivatives
in order to avoid an artificial perturbation of the train dynamics. Spline
interpolations on a length corresponding to the minimal wavelength of the
measured irregularities are then used to fulfill these continuity conditions.

Therefore, the proposed stochastic modeling allows us to generate realistic
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track geometries of length Stot = NT S that are representative of the whole
network, and which take into account the spatial and statistical dependencies
between the different track irregularities. As an illustration, a particular
extract of length S of complete track geometry Xtot (θ1) is represented in
Figure 7. This graph is centered at abscissa s = 3S/2, that is to say at a

junction between the two first realizations of random vector X̃. The four
components of X tot(θ1) are represented in the same graph, but their values
are translated to allow a better visualization of the results.

3. Validation of the track geometry stochastic modeling

As presented in Introduction, a complete parametrization of the physical
and statistical properties of the track geometry would be of great interest in
conception, certification and maintenance prospects. Several validations of
the proposed stochastic modeling are thus presented in this section, in order
to allow a relevant investigation of the dynamic interaction between the train
and the track.
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Figure 8: Validation of the generation of track geometries with respect to
the number of upcrossings.

3.1. Statistical and frequency validation of the local track geometry stochastic

modeling

In this section, 5, 000 track irregularities vectors of total length S are
generated from the track stochastic modeling developed in Section 2. For
1 ≤ i ≤ 4, we use Nmes

up (Xi, u, S) and Ngen
up (Xi, u, S) to denote the mean

numbers of upcrossings (see [43] for more details about the upcrossings)
of the level u by Xi over the length S, which have been evaluated from
the νexp = 1, 730 available measured track geometries and from the 5, 000
generated track geometries of length S respectively. In the same manner, for
1 ≤ i ≤ 4, let PSDmes

i and PSDgen(Xi) be the mean power spectral densities
of Xi that have been computed from the former 1, 730 measured and 5, 000
generated track geometries of length S.

A good agreement between the quantities corresponding to the measured
and to the generated track geometries can be seen in Figures 8 and 9. This
allows us to validate the local stochastic modeling over a length S from a
statistical and frequency point of view.
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Figure 9: Validation of the generation of track geometries with respect to
the frequency content.

3.2. Dynamical validation of the global track geometry stochastic modeling

This section aims now at validating the complete modeling from a dy-
namical point of view. In this prospect, a measured track design of length
5km around a horizontal curve of a high speed line is considered, for which
horizontal and vertical curvatures, cH and cV , and track superelevation, cL,
are represented in Figure 10. ν track irregularities of total length 5km,{
z(1), . . . , z(ν)

}
, are then extracted from the available measured track geom-

etry. These track irregularities have also been chosen around a horizontal
curve. In parallel, ν track irregularities,

{
Xtot(θ1), · · · ,X

tot(θν)
}
, of total

length Stot = 5km are generated from the local-global stochastic modeling
described in Section 2.

Coupled to the model of a train, these two sets of track conditions can
now be used in any rigid-multibodies railway software to characterize the
train dynamic behavior. For our study, it is supposed that a normalized
model of a TGV train is available, for which mechanical parameters have
been accurately identified, and a commercial code, which is called Vampire,
has been used to perform the railway simulations.

The validation of the global stochastic modeling is then based on the
frequency and the statistical analysis of eight dynamical quantities of interest:
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Figure 10: Track Design of the simulated railway track.

• the vertical and horizontal accelerations of the first bogie of the motor
car, Q1 = z̈MC and Q2 = ÿMC;

• the vertical and horizontal accelerations of the second bogie of the
second passenger car, Q3 = z̈PC and Q4 = ÿPC;

• the left and right transverse contact forces at the first wheelset of the
first bogie of the motor car, Q5 = Y ℓ

MC and Q6 = Y r
MC ;

• the left and right transverse contact forces at the second wheelset of
the second bogie of the second passenger car, Q7 = Y ℓ

PC and Q8 = Y ℓ
PC .

In the same manner than in Section 3.1, for 1 ≤ i ≤ 8, we are inter-
ested in the mean power spectral densities of Qi and the mean numbers
of upcrossings of the level u by Qi over the length Stot = 5km, which are
respectively denoted by PSDmes(Qi) and Nmes

up (Qi, u, S
tot) when these quan-

tities are computed from the measured track geometries and PSDgen(Qi)
and Ngen

up (Qi, u, S
tot) when these quantities are computed from the generated

track geometries. The comparisons between these quantities are represented
in Figure 11. In can therefore be deduced from these figures that the stochas-
tic modeling method used in this work can make sure that the frequency and
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statistical contents of generated track geometries with a local-global length
of S are similar to measured ones from the train response point of view.

4. Conclusion and prospects

A complete parametrization of the track geometry, which takes into ac-
count its physical properties and its variability are nowadays of great interest
to be able to face always more challenging railway issues. In this prospect,
this paper has presented a general method to model a discretized R

4-valued
random field indexed by s ∈ [0, S] thanks to a double projection, which can
be applied to many other mechanical systems. First, a Karhunen-Loève ex-
pansion is used to decompose the projection of the discretized random field
as a deterministic matrix and a high dimension random vector. The distri-
bution of this high dimension random vector is then characterized thanks to
a truncated PCE. This paper moreover describes in details how to control
and justify the different truncation parameters. Then, complete track geome-
tries that are realistic and representative of a whole railway network can be
generated from a local-global approach. At last, a double validation of this
stochastic model is presented, in order to make sure that the frequency and
statistical contents of generated and measured track geometries are similar.
These geometries can finally be used in any railway software to characterize
the dynamic behavior of trains.
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Appendix A: definition of the local-global error functions

It is assumed that ν track portions of same length L = 10km,
{
z(1), . . . , z(ν)

}
,

have been collected from the available measurements of the railway network of
interest. For any value for S, ν new track geometries,

{
y(1)(S), . . . ,y(ν)(S)

}
,

of total length L, are then built from the concatenation of track sub-sections
of length S that have been randomly chosen in

{
z(1), . . . , z(ν)

}
.

For (s, s′) in [0, L]2 and f ≥ 1/L, let (s, s′) 7→ [Rzz(s, s
′)], (s, s′) 7→

[Ryy(s, s
′, S)], f 7→ Σz(f) and f 7→ Σy(f, S) be the following quantities:
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Figure 11: Spectral and statistical analysis of the dynamical quantities of
interest Q1, Q2,. . ., Q8.
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[Rzz(s, s
′)] =

1

ν

ν∑

n=1

z(n)(s)z(n)(s′)T , (25)

[Ryy(s, s
′, S)] =

1

ν

ν∑

n=1

y(n)(s, S)y(n)(s′, S)T , (26)

Σz =

√√√√1

ν

ν∑

n=1

PSD (z(n)), Σy(S) =

√√√√1

ν

ν∑

n=1

PSD (y(n)(S)), (27)

where PSD (z) = (PSD(z1), . . . , PSD(zP )) is the power spectral density
estimation of any R

P -valued function z = (z1, . . . , zP ). For any value of S in
[0, L], errors err2cov(S) and err2spect(S), which have been introduced in Section
2.1 are then defined by:

err2cov(S) = ‖[Rzz]− [Ryy(S)]‖
2
M / ‖[Rzz]‖

2
M , (28)

err2spect(S) = ‖Σz −Σy(S)‖
2
V / ‖Σz‖

2
V , (29)

where, for all (P × P ) matrix-valued function [R], and for all R
P -valued

function Σ,

‖[R]‖2M =

∫ L

0

∫ L

0

Tr
(
[R(s, s′)][R(s, s′)]T

)
dsds′, (30)

‖Σ‖2V =

∫ +∞

1/L

Σ(f)TΣ(f)df. (31)

Hence, on the first hand, err2cov(S) corresponds to a covariance error,
which quantifies the approximation introduced by the asumption that E

[
X(s)X(s′)T

]

is negligible. On the other hand, err2spect(S) can be seen as a spectral error,
which characterizes the impact of S on the frequency content of the track
irregularities.
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